1. Trang chủ
  2. » Luận Văn - Báo Cáo

Đề thi và đáp án CMO năm 2013

1 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 107,62 KB

Nội dung

Prove that the reflection of BC in the line P Q is tangent to the circumcircle of triangle AP Q...[r]

(1)

45th Canadian Mathematical Olympiad

Wednesday, March 27, 2013

1 Determine all polynomials P(x) with real coefficients such that (x+ 1)P(x1)(x1)P(x)

is a constant polynomial

2 The sequencea1, a2, , an consists of the numbers 1,2, , nin some order For

which positive integersnis it possible that then+1 numbers 0,a1,a1+a2,a1+a2+a3,

., a1+a2+· · ·+an all have different remainders when divided by n+ 1?

3 LetG be the centroid of a right-angled triangle ABC with ∠BCA = 90 Let P

be the point on ray AG such that ∠CP A=∠CAB, and let Q be the point on ray BGsuch that ∠CQB =∠ABC Prove that the circumcircles of triangles AQGand BP Gmeet at a point on side AB.

4 Let n be a positive integer For any positive integer j and positive real number r, define fj(r) and gj(r) by

fj(r) = (jr, n) +

µ j r, n

, and gj(r) = (djre, n) + min

àằ j r

, n

, wheredxe denotes the smallest integer greater than or equal to x Prove that

n

X

j=1

fj(r)≤n2+n n

X

j=1

gj(r)

for all positive real numbers r.

5 LetO denote the circumcentre of an acute-angled triangle ABC Let pointP on side AB be such that ∠BOP = ∠ABC, and let point Q on side AC be such that

Ngày đăng: 09/04/2021, 22:04

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w