1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài 8: Mô hình Tobit

25 9 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 25
Dung lượng 826,19 KB

Nội dung

 prices, when controlled by government  working hours, stays zero for unemployed  loan, remains zero for rejected application... Example: non-censored/truncated variable..[r]

(1)

THE TOBIT MODEL

(2)

Censored & Truncated data

 Sometimes we can’t observe values lower or

beyond a certain level, for example:

dividend, which remains zero until profit reaches a

certain level

(3)

Censored & Truncated data

 y is censored if:

 we can observe all values of y, but

 only in a certain interval, values beyond the interval

are recorded as a constant (example: 0)

 y >= k : censored from below  y <= k : censored from above

 y is truncated if we can only observe it in the

(4)(5)(6)(7)(8)(9)(10)(11)

OLS, censored/truncated variable and the Tobit model

 OLS with censored/truncated dependent variables

(12)

The Tobit model

 Tobit model

 Notes:

 We can observe y*, but can’t observe y  y is the latent variable

*

y x if a y b

y a if y a

b if y b

  

     

 

(13)

Estimation of the Tobit model

 Log-likelihood function (d is dummy: = censored)

 2    2  

2

1

log log log 2 1 1

2

N N

i i i

i i

i i

y X X

L   dd

(14)

Case study: credit card balance

 Dependent variable: balance of credit card (USD)  Explanatory variables:

 interest charged (%)  age (year)

(15)

Credit card balance and interest 0 10 00 00 20 00 00 30 00 00 40 00 00 ba la nce

5 10 15 20 25 30

(16)

Tobit model in Stata

right-censored observations 1886 uncensored observations

Obs summary: 1018 left-censored observations at balance<=0

(17)

Hypotheses testing

Prob > F = 0.0000 F( 3, 2900) = 118.33 ( 3) [model]edu = 0

( 2) [model]male = 0 ( 1) [model]age = 0 test age male edu

Prob > F = 0.0000 F( 1, 2900) = 18.21 ( 1) [model]interest = 0

(18)

Marginal effects of Tobit model Three types of marginal effects after Tobit:

 Type 1: the betas indicate how latent

variable y change when regressors x changes.

 Type 2: indicates how y* changes

when x changes, provided that y* is within the boundaries.

 Type 3: indicates how the observed

variable y* changes when x changes.

y x      * *  |

(19)

Marginal effects (Type 2) at average

edu -694.8761 115.1101 -6.04 0.000 -920.4877 -469.2645 male 2610.969 709.4244 3.68 0.000 1220.523 4001.415 age -371.4221 21.45434 -17.31 0.000 -413.4718 -329.3723 interest -277.4943 65.10832 -4.26 0.000 -405.1043 -149.8844 dy/dx Std Err z P>|z| [95% Conf Interval] Delta-method

dy/dx w.r.t : interest age male edu

Expression : E(balance|balance>0), predict(e(0,.)) Model VCE : OIM

(20)

Marginal effects (Type 2) at specific value

edu -763.6603 134.754 -5.67 0.000 -1027.773 -499.5474 male 2869.423 781.2861 3.67 0.000 1338.13 4400.716 age -408.1883 24.24905 -16.83 0.000 -455.7156 -360.6611 interest -304.9629 73.5335 -4.15 0.000 -449.0859 -160.8398 dy/dx Std Err z P>|z| [95% Conf Interval] Delta-method

edu = 12

at : interest = 12 dy/dx w.r.t : interest age male edu

Expression : E(balance|balance>0), predict(e(0,.)) Model VCE : OIM

(21)

Marginal effects (Type 3) at average

edu -870.875 144.0877 -6.04 0.000 -1153.282 -588.4684 male 3272.278 889.0664 3.68 0.000 1529.74 5014.816 age -465.4963 26.79131 -17.37 0.000 -518.0063 -412.9863 interest -347.7784 81.54693 -4.26 0.000 -507.6074 -187.9493 dy/dx Std Err z P>|z| [95% Conf Interval] Delta-method

dy/dx w.r.t : interest age male edu

Expression : E(balance*|balance>0), predict(ystar(0,.)) Model VCE : OIM

(22)

Marginal effects (Type 3) at specific value

edu -1001.511 181.137 -5.53 0.000 -1356.533 -646.4891 male 3763.137 1025.247 3.67 0.000 1753.69 5772.585 age -535.3232 31.84395 -16.81 0.000 -597.7362 -472.9102 interest -399.947 97.54245 -4.10 0.000 -591.1267 -208.7673 dy/dx Std Err z P>|z| [95% Conf Interval] Delta-method

edu = 12

at : interest = 12 dy/dx w.r.t : interest age male edu

Expression : E(balance*|balance>0), predict(ystar(0,.)) Model VCE : OIM

(23)

Applications of Tobit model

Mayer & Walker (1996) An Empirical Analysis of the

Choice of Payment Method in Corporate Acquisitions

Quarterly J of Bus and Econ 35 (3): 48-65

 Sample: 261 acquisitions 1979-90 Fortune 500

 Dependent variable: % cash financing the acquisition

 independent variables:

 preference of manager on control

(24)

Applications of Tobit model

Min&Kim (2003) Modeling Credit Card Borrowing Southern Economic Journal 70(1): 128-43.

 Data: US Survey of Consumer Finance 1998, 2904 inds

 dependent variable: individual credit card balance

 independent variables:

 interest rate charged  income

 liquid assets  taste

(25)

Applications of Tobit model

Amuedo-Dorantes (2006) Money Transfer among Banked and Unbanked Mexican Immigrants

Southern Economic J 73(2): 374-401.

 Data: 2928 Mexican immigrants in the US  dependent variable: remittances

 independent variable:

Ngày đăng: 08/04/2021, 18:52