c) Trên nửa mặt phẳng bờ OM có chứa điểm A, vẽ nửa đường tròn đường kính MF; nửa đường tròn này cắt tiếp tuyến tại E của (O) ở K. Gọi S là giao điểm của hai đường thẳng CO và KF. Chứng m[r]
(1)SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT TP.HCM
Năm học: 2012 – 2013
MƠN: TỐN Thời gian làm bài: 120 phút Bài 1: (2 điểm) Giải phương trình hệ phương trình sau:
a) 2x2 x 30 b)
2
3
x y
x y
c) x4 x2 120 d) x2 2x 70
Bài 2: (1,5 điểm)
a) Vẽ đồ thị (P) hàm số
2
y x
đường thẳng (D):
1 2
y x
hệ trục toạ độ
b) Tìm toạ độ giao điểm (P) (D) câu phép tính
Bài 3: (1,5 điểm) Thu gọn biểu thức sau:
1
1
x A
x
x x x x với x > 0; x1 (2 3) 26 15 (2 3) 26 15
B
Bài 4: (1,5 điểm) Cho phương trình x2 2mx m 0 (x ẩn số)
a) Chứng minh phương trình ln ln có nghiệm phân biệt với m
b) Gọi x1, x2 nghiệm phương trình
Tìm m để biểu thức M = 12 22 24
6
x x x x đạt giá trị nhỏ nhất
Bài 5: (3,5 điểm) Cho đường tròn (O) có tâm O điểm M nằm ngồi đường tròn (O) Đường thẳng MO cắt (O) E F (ME<MF) Vẽ cát tuyến MAB tiếp tuyến MC (O) (C tiếp điểm, A nằm hai điểm M B, A C nằm khác phía đường thẳng MO)
a) Chứng minh MA.MB = ME.MF
b) Gọi H hình chiếu vng góc điểm C lên đường thẳng MO Chứng minh tứ giác AHOB nội tiếp
c) Trên nửa mặt phẳng bờ OM có chứa điểm A, vẽ nửa đường trịn đường kính MF; nửa đường trịn cắt tiếp tuyến E (O) K Gọi S giao điểm hai đường thẳng CO KF Chứng minh đường thẳng MS vng góc với đường thẳng KC
d) Gọi P Q tâm đường tròn ngoại tiếp tam giác EFS ABS T trung điểm KS Chứng minh ba điểm P, Q, T thẳng hàng
(2)SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT
TP.HCM Năm học: 2013 – 2014
ĐỀ CHÍNH THỨC MƠN: TỐN
Thời gian làm bài: 120 phút Bài 1: (2 điểm) Giải phương trình hệ phương trình sau:
a) x2 5x 6 b) x2 2x1 0
c)
x x
d)
2
2
x y x y Bài 2: (1,5 điểm)
a) Vẽ đồ thị (P) hàm số y x 2 đường thẳng (D): y x2 trên hệ trục toạ độ
b) Tìm toạ độ giao điểm (P) (D) câu phép tính
Bài 3: (1,5 điểm) Thu gọn biểu thức sau:
3
3
x x
A
x
x x với x0; x9
2 2
21 3 3 15 15
B
Bài 4: (1,5 điểm) Cho phương trình 8x2 8x m 2 1 0 (*) (x ẩn số) a) Định m để phương trình (*) có nghiệm
1
x
b) Định m để phương trình (*) có hai nghiệm x1, x2 thỏa điều kiện: 4 3
1
x x x x
Bài 5: (3,5 điểm) Cho tam giác ABC khơng có góc tù (AB < AC), nội tiếp đường tròn (O; R) (B, C cố định, A di động cung lớn BC) Các tiếp tuyến B C cắt M Từ M kẻ đường thẳng song song với AB, đường thẳng cắt (O) D E (D thuộc cung nhỏ BC), cắt BC F, cắt AC I
a) Chứng minh MBC BAC Từ suy MBIC tứ giác nội tiếp
b) Chứng minh rằng: FI.FM = FD.FE
c) Đường thẳng OI cắt (O) P Q (P thuộc cung nhỏ AB) Đường thẳng QF cắt (O) T (T khác Q) Chứng minh ba điểm P, T, M thẳng hàng
(3)BÀI GIẢI
Bài 1: (2 điểm)
Giải phương trình hệ phương trình sau: a) 2x2 x 0 (a)
Vì phương trình (a) có a - b + c = nên (a)
3
2 x hay x
b)
2 (1) (2)
x y
x y
2 (1)
5 (3) ((2) (1) )
x y x y
13 13 ((1) 2(3)) (3) ((2) (1) )
y x y
1
y x
c) x4x212 0 (C)
Đặt u = x2 0, phương trình thành : u2 + u – 12 = (*)
(*) có = 49 nên (*)
1
u
hay
1
u
(loại) Do đó, (C) x2 = x =
Cách khác : (C) (x2 – 3)(x2 + 4) = x2 = x =
d) x2 2x 0 (d)
’ = + = (d) x = 3
Bài 2:
a) Đồ thị:
Lưu ý: (P) qua O(0;0), 2;1 , 4; 4 (D) qua 4; , 2;1
(4)M E F K S A B T P Q C H O V 1
4x 2x x2 + 2x – = x4 hay x2 y(-4) = 4, y(2) =
Vậy toạ độ giao điểm (P) (D) 4; , 2;1
Bài 3:Thu gọn biểu thức sau:
1
1 x A x
x x x x
2
x x x x x
x x x
2
( 1)
x x
x x x
2 1 x x x
2 ( 1) ( 1) x x x x
x với x > 0; x1 (2 3) 26 15 (2 3) 26 15
B
1
(2 3) 52 30 (2 3) 52 30
2
2
1
(2 3) (3 5) (2 3) (3 5)
2
1
(2 3)(3 5) (2 3)(3 5)
2
Câu 4:
a/ Phương trình (1) có ∆’ = m2 - 4m +8 = (m - 2)2 +4 > với m nên phương
trình (1) có nghiệm phân biệt với m b/ Do đó, theo Viet, với m, ta có: S =
2
b m a
; P =
c m a
M = 2 24
( )
x x x x = 2
24
4 16
m m m m
2 ( 1)
m Khi m = ta có (m1)23nhỏ nhất
6 ( 1)
M
m lớn m = 1
6 ( 1)
M
m nhỏ m = 1
Vậy M đạt giá trị nhỏ - m = Câu
a) Vì ta có hai tam giác đồng dạng MAE MBF Nên
MA MF
ME MB MA.MB = ME.MF
(Phương tích M đường tròn tâm O) b) Do hệ thức lượng đường trịn ta có MA.MB = MC2, mặt khác hệ thức lượng
trong tam giác vng MCO ta có
MH.MO = MC2 MA.MB = MH.MO
(5)Vậy ta có : MK2 = ME.MF = MC2 nên MK = MC.
Do MF đường trung trực KC nên MS vng góc với KC V
d) Do hệ thức lượng đường trịn ta có MA.MB = MV.MS đường tròn tâm Q