chứng tỏ rằng hai số 3n+4 và n+1là hai số nguyên tố cùng nhau.[r]
(1)UBND HUYỆN VĨNH BẢO
TRƯỜNG THCS HỒ BÌNH KIỂM TRA 45 PHÚT
MƠN TỐN - TIẾT 39 ngày kiểm tra 24/11/2010
Ma trËn bµi kiĨm tra sè 2- tiÕt 39
néi dung kiÕn thøc nhËn biÕt th«ng hiĨu vËn dơng tỉng
tn tl tn tl tn tl tn tl
TËp hợp, số phần tử tập
hợp, giao hai tập hợp 1(0,25) 1(0,25) 2(0,5)
số nguyên tố, hợp số, phân
tích thừa số nguyên tố 1(0,25) 1(0,25) 1(0,5) 2(0,5) 1(1)
¦C, ¦CLN, BC, BCNN 1( 0,25) 1
(0,25) (0,25) (2,5) (0,75) 1(2)
Thø tù thùc hiÖn phÐp tÝnh mét biĨu thøc, DÊu hiƯu chia hÕt cho 2,3,5,9
1 (0,25) 2(5) (0,25) (5)
3(0,75) 4(1)
(0,5) (0,25) 3(7) (2) (8) I Phần trắc nghiệm.
Hãy ghi lại chữ đứng trước câu trả lời đúng.
Câu 1: cho số a= 23.34.5 số ước a là.
A 12 B 20 C 40 D 60
Câu 2: Tập hợp chữ từ “Em muốn giỏi tốn” có số phần tử là:
A B 10 C 12 D 14
Câu 3: Khẳng định sau sai.
A BCNN( 6;18;36) = 36 B ƯCLN(8;24;32) = C.BCNN( 13;5;11) = 13.5.11 D.BCNN( a,b,1) = a.b
Câu 4: Trong tập hợp sau tập hợp có phần tử số nguyên tố. A {1;2;3;5;7} B {2;3;5;7;9} C {1;3;5;7} D {2;3;5;7}
Câu 5: Số 360 phân tích thừa số nguyên tố là:
A 22.33.5.7 B 23.32.5.7 C 23.32.5 D 23.32.52
Câu6: Điền chữ số thích hợp vào dấu * số 72** để số chia hết cho 2;3;5;9
A 30 B.18 C 45 D.90
Câu7: Cho hai tập hợp A= {1;2;3;4;5} B Là tập hợp số lẻ.Giao hai tập hợp A B
(2)Câu8: ƯCLN( 40; 56) là.
A B C.16 D.18 II Phần tự luận.
Câu 1: Tìm số tự nhiên chia hết cho 8, cho 10, cho15 Biết số trong khoảng từ 200đến 500
Câu 2: tìm số tự nhiên x biết
a) 5.x -176 = 34.22 b) 7.(42 –x) = 53 +134
Câu 3: Thực phép tính:
a [(58 +72).5 – (600 +45) ] 12 b 234 53 + 47 234 c 14 32 + 23 – 7
d chứng tỏ hai số 3n+4 n+1là hai số nguyên tố
C ĐÁP ÁN - BIỂU ĐIỂM: Phần trắc nghiệm: (2 điểm) câu cho 0,25 điểm
Câu
Đáp
án C B D D C D B B
Phần tự luận Câu (2,5 điểm)
Gọi số phải tìm x Ta có:
x ⋮ ; x ⋮ 10 ; x ⋮ 15 200 x 500 (1 điểm)
Suy x BC (8; 10; 15)
BCNN (8; 10; 15) = 120 (1 điểm) BC (8; 10; 15) = 0; 120; 240; 360; 480;
x 240;360;480 (0,5 điểm) Câu (2 điểm):
a) tìm x = 100 b) x= (2 điểm) Câu 3: (3,5 điểm)
a = =5.12 = 60 (1 điểm) b 234(53 + 47) = 234 100 = 234000 (1 điểm)
c 14 + – = 126 + 40 – 42 = 124 (1 điểm)
d Gọi ƯCLN( 3n+4 n+1) d (0,5 điểm)
ta có 3n+4 ⋮ d n+1 ⋮ d hay 3(n+1) ⋮ d ⇒ 3n+3 ⋮ d
⇒ (3n+4)- (3n+3) ⋮ d ( theo tình chất chia hết tổng)
⇔ ⋮ d ⇒ d=1
(3)