1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

David vernon introduction to computer systems e02p8vE5a0pXJOQ1A9eTYVvMdI1Ecw8u pdf

358 6 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 358
Dung lượng 647,39 KB

Nội dung

An Introduction to Computer Systems David Vernon Copyright © 2007 David Vernon (www.vernon.eu) A Computer • • • takes input processes it according to stored instructions produces results as output Copyright â 2007 David Vernon (www.vernon.eu) Key Concepts ã ã • Input: Data Instructions: Software, Programs Output: Information (numbers, words, sounds, images) Copyright © 2007 David Vernon (www.vernon.eu) Types of Computer Computer Special Purpose (embedded systems) Pre-programmed General Purpose (user-programmable) Can be adapted to many situations Watches Traffic Signals Personal Computers Workstations Engine Management Televisions Mainframes Supercomputers Telephones Navigation Devices Copyright â 2007 David Vernon (www.vernon.eu) Data vs Information ã A • A – your grade in the exam • 2, 4, 23, 30, 31, 36 • 2, 4, 23, 30, 31, 36 – Next week’s Lotto numbers Copyright © 2007 David Vernon (www.vernon.eu) Key Concepts • Codes – Data and information can be represented as electrical signals (e.g Morse code) – A code is a set of symbols (such as dots and dashes in Morse code) that represents another set of symbols, » » » » such as the letters of the alphabet, or integers or real numbers, or light in an image, for the tone of a violin Copyright â 2007 David Vernon (www.vernon.eu) Key Concepts ã ã A circuit is an inter-connected set of electronic components that perform a function Integrated Circuits (ICs) – Combinations of thousands of circuits built on tiny pieces of silicon called chips Copyright â 2007 David Vernon (www.vernon.eu) Key Concepts ã Binary signal (two state signal) – – – – Data with two states off & on low voltage & high voltage 0v & 5v Copyright © 2007 David Vernon (www.vernon.eu) Key Concepts • Bit – Single Binary Digit – Can have value or 1, and nothing else – A bit is the smallest possible unit of information in a computer Copyright â 2007 David Vernon (www.vernon.eu) Key Concepts ã Groups of bits can represent data or information – – – – – – – bit - alternatives bits - alternatives bits - alternatives bits - 16 alternatives n n bits - alternativies 8bits - = 256 alternatives a group of bits is called a byte Copyright © 2007 David Vernon (www.vernon.eu) Full Adder • • The circuit to add three binary digits (two operands and a carry bit) is called a Full Adder (FA) It can be implemented using two half adders A B Ci Ci+1 FA S Copyright © 2007 David Vernon (www.vernon.eu) Full Adder , Co A HA B S , ,, Co Co HA S Ci Copyright â 2007 David Vernon (www.vernon.eu) Full Adder ã Addition is carried out in two stages – add bits A and B to produce » partial sum S’ » and (the first) intermediate output carry Co’ – add partial sum S’ and input carry Ci from previous stage to produce » final sum » and (the second) intermediate output carry Co’’ – We then need to combine the intermediate carry bits (they don’t have to be added) Copyright © 2007 David Vernon (www.vernon.eu) Full Adder A B Ci S’ Co’ Co’’ Co S A ⊕ B A ⊕ B ⊕ Ci 0 0 1 1 0 1 0 1 1 1 Copyright © 2007 David Vernon (www.vernon.eu) Full Adder A B Ci S’ Co’ Co’’ Co S A ⊕ B A ⊕ B ⊕ Ci 0 0 1 1 0 1 0 1 1 1 0 1 1 0 0 0 0 1 Copyright © 2007 David Vernon (www.vernon.eu) Full Adder A B Ci S’ Co’ Co’’ Co S A ⊕ B A ⊕ B ⊕ Ci 0 0 1 1 0 1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 0 1 0 Copyright © 2007 David Vernon (www.vernon.eu) Full Adder A B Ci S’ Co’ Co’’ Co S A ⊕ B A ⊕ B ⊕ Ci 0 0 1 1 0 1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 0 0 1 1 1 0 Copyright © 2007 David Vernon (www.vernon.eu) Full Adder A B Ci S’ Co’ Co’’ Co S A ⊕ B A ⊕ B ⊕ Ci 0 0 1 1 0 1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 1 0 Copyright © 2007 David Vernon (www.vernon.eu) Full Adder A B Ci S’ Co’ Co’’ Co S A ⊕ B A ⊕ B ⊕ Ci 0 0 1 1 0 1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 1 0 Copyright © 2007 David Vernon (www.vernon.eu) 1 0 Full Adder • A few observations The truth table demonstrates why Co = Co’ + Co’’ • It’s clear also that S = A ⊕ B ⊕ Ci • • Also, we could obtain a simplified expression for Co from a Karnaugh Map Co = A.B + B.Ci + A.Ci Copyright © 2007 David Vernon (www.vernon.eu) 3-Variable Karnaugh Map A=1 00 01 11 10 C=1 B=1 Copyright © 2007 David Vernon (www.vernon.eu) 3-Variable Karnaugh Map A=1 C=1 00 01 11 10 0 1 1 B=1 Co = A.B + B.Ci + A.Ci Copyright © 2007 David Vernon (www.vernon.eu) Full Adder • So, instead of implementing a full adder as two half adders, we could implement it directly from the gating: S = A ⊕ B ⊕ Ci Co = A.B + B.Ci + A.Ci Copyright © 2007 David Vernon (www.vernon.eu) Full Adder • Irrespective of the implementation of a full adder, we can combine them to add multiple digit binary numbers Copyright © 2007 David Vernon (www.vernon.eu) 4-Bit Binary Adder S3 S2 S0 S1 Co Co Co Co Full Adder Full Adder Full Adder Half Adder Ci A3 B3 Ci A2 B2 Ci A1 B1 Copyright © 2007 David Vernon (www.vernon.eu) A0 B0 ... operation of the computer system Copyright © 2007 David Vernon (www .vernon. eu) Components of Computer Systems Copyright © 2007 David Vernon (www .vernon. eu) Components of Computer Systems • • • •... © 2007 David Vernon (www .vernon. eu) Line Printer Key Components • • • • Input Output Storage Processor Copyright © 2007 David Vernon (www .vernon. eu) Storage Systems STORAGE • Units of Storage... 2007 David Vernon (www .vernon. eu) INPUT Input Systems ã Mouse » Cursor manipulation device » Trackball Copyright © 2007 David Vernon (www .vernon. eu) Keyboard Mouse INPUT Input Systems Keyboard Touch

Ngày đăng: 02/04/2021, 09:45