[r]
(1)A.Một số toán bản: 1).Giải phơng trình : a)
2
2 4x x 256 b) 2 5x x 0 01, c) 2x 3x 216 d)
2
1
4 x
x
2).Giải bất phơng trình
a) 3x+2 < 9 b)
2 2
3x x 27 c)
2 8 20
8
x x
3) Gi¶i phơng trình :
a) 4x + 2x+1 - = 0. b) 4x +5x = 9x.
c) 3x = 11- x d) 4.9x +12x -3.16x = 0.
e) 9x +2(x-2).3x +2x -5 = 0.
4) Giải phơng trình :
a) Ln x +ln(x+1) = b) lnx(x+1) =0
c) -log3x +2log2x = 2- logx. d) logx +logx2 = log9x.
e) log(x2-x-6)+x = log(x+2) +4. e) log(1+ x) = log 3x
B.Một số thi từ năm 2002-2008 I.Giải ph ơng trình mũ logarit
1).23x+1 -7.22x +7.2x -2 = 0. 2)3.8x +4.12x -18x -2.27x = 0.
3) 9x
+x −1−10 3x2 +x −2
+1=0 4)
2 2
2x x 4.2x x x 4 5)log3(x-1)2 +
log (2x1)
= 6)logx2 +2log2x4 =
log x8 7)
x −1¿3=0
log√2√x+1−log1
(3− x)−log8¿ 8)log2(4x+15.2x +27 ) +
2
1
log
4.2x 3
9)log4 (x-1) + log2x+14=
1
2+log2√x+2
. 10)( 2-log3x)log9x3 -
4
1 log x
11)log3(3x-1)log3(3x+1-3) = 12)
2
2 1
log x (2x x 1) log (2 x x 1) 4 13)log2(4x+15.2x +27 ) +
2
1
log
4.2x 3
14)2(log2x+1)log4x +log2
1 4 = 0.
15)
2
2 1
log x (2x x 1) log (2 x x1) 4 16).3x- log
68x = log6(33x + x2 – 9)
17)log2x + 2log7x = + log2xlog7x 18)logx2(2 + x) + log ❑√2+x x = II.Gi¶i bất ph ơng trình logarit
1)
2 0,7
log log
4 x x x
. 2)
2 x x x log
3)(logx8+log4x2)log2 2x0 4) log1
√2x2−3x+1+1
2log2(x −1)
≥1
2
5)logx+1(-2x) > 6)log5(4x +144) -4log52 < + log5(2x-2 + 1)
7)
x+1¿3 ¿ x+1¿2−log3¿
log3¿ ¿ >0 8) 2 x x x log 9) 3
2log (4x 3) log (2 x3) 2
10)(x + 1)
log1 2
x + ( 2x + 5)
log1
2 x + 6
11)
1
3 3
2
3
log log x log x
1. 12)
2 0,7
log log
4 x x x .
(2)15) x −1¿
2. 1+log6x −1
x+7=
1 2log6¿
16)
4+x¿3
x+1¿2+2=log√2√4− x+log8¿ log4¿
17)