Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 130 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
130
Dung lượng
3,08 MB
Nội dung
博士留学生学位论文 基于能量枢纽模型的微能源网优化运行 氧化石墨烯调控纳米结构 ZnO 和 TiO2 作 者 姓 名 HA THANH TUNG 学 科 专 业 电力系统及其自动化 指 导 教 师 张勇军 教授 所 在 学 院 电力学院 论文提交日期 20 18 年 12 月 日 Optimal operation of Micro energy networks based on energy hub model A Dissertation Submitted for the Degree of Doctor of Philosophy Candidate:Ha Thanh Tung Supervisor:Prof YongJun Zhang South China University of Technology Guangzhou, China 分类号:TM71 学校代号:10561 学 号:201512800123 华南理工大学博士学位论文 基于能量枢纽模型的微能源网优化运行 作者姓名:Ha Thanh Tung 指导教师姓名、职称:张勇军 教授 申请学位级别:工学博士 学科专业名称:电力系统及其自动化 研究方向:能源互联网优化运行 论文提交日期:2018 年 12 月 26 日 论文答辩日期:2019 年 03 月 日 学位授予单位:华南理工大学 学位授予日期: 答辩委员会成员: 主席: 蔡泽祥 委员: 吴杰康、管霖、刘明波、张勇军 年 月 日 华南理工大学 学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所 取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任 何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡 献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的 法律后果由本人承担。 作者签名: 日期: 年 月 日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,即: 研究生在校攻读学位期间论文工作的知识产权单位属华南理工大学。学校 有权保存并向国家有关部门或机构送交论文的复印件和电子版,允许学位 论文被查阅(除在保密期内的保密论文外);学校可以公布学位论文的全 部或部分内容,可以允许采用影印、缩印或其它复制手段保存、汇编学位 论文。本人电子文档的内容和纸质论文的内容相一致。 本学位论文属于: □保密,(校保密委员会审定为涉密学位时间: 年 月 日) 于 年 月 日解密后适用本授权书。 □不保密,同意在校园网上发布,供校内师生和与学校有共享协议 的单位浏览;同意将本人学位论文编入有关数据库进行检索,传播学位论 文的全部或部分内容。 (请在以上相应方框内打“√”) 作者签名: 指导教师签名: 作者联系电话: 联系地址(含邮编): 日期: 日期: 电子邮箱: 摘要 在当今经济社会活动中,能源发挥着重要的作用。一方面,能源成本是产品价值 的重要影响因素;另一方面,能源的安全和由能源利用所引发的环境问题也促使人类 不断探索节能以及环保的新模式,促进了科学和技术的发展革新。当前针对能源危机 和环境问题,全球科学家重点关注的一个解决方案就是构建能够综合不同类型能源的 能源网络,即综合能源系统。通过综合能源系统增强用户用能的可靠性、减少环境污 染、提高能源综合利用效率,推进社会资源环境的可持续性发展。 能量枢纽(Energy Hub,EH)是构建综合能源系统的一个重要基础。能量枢纽模 型构建了一个可连接各种类型能量,并且可以灵活响应各种负荷需求的微能源系统模 型,适用于居民区以及市中心等负荷集中区。如今,城市化的快速发展导致了负荷的 激增以及负荷使用类型的多样化,同时,先进的可再生能源技术以及存储和转化技术 在提高能源效率方面也取得了重大的进展。因此需要新的研究方案来改进能量枢纽的 结构并且解决多个能量枢纽构建的微能源网模型的最优运行的问题。本文将在能量枢 纽模型的基础上,对综合微能源网的优化运行问题进行分析,本文的主要内容分为以 下三个部分: 1、为突破现有 EH 建模研究的局限性,本文提出了一种扩展 EH 模型,用于提高 住宅区负荷的综合能源利用效率,降低能源使用成本。这个扩展模型考虑到了太阳能 (包括太阳能的光电利用和光热应用)与电池储能系统(Battery energy storage system, BESS)相结合。在现有的能源价格及满足能源负荷需求的前提下,以一天能源使用总成 本最低为目标,对 EH 中设备及外部供能的功率分配进行优化。约束条件包含了 EH 输 入-输出的能量平衡,设备的容量限制以及 BESS 的荷电状态约束等。仿真算例对比分 析了在不同 EH 结构的情况下,太阳能光电、光热利用和 BESS 对运行调度的影响。结 果表明所提出的模型对优化用户综合用能具有较好的效益,并且,该 EH 结构和运行优 化模型适用于住宅型园区的负荷。 2、EH 的结构特征和优化运行对园区供能特性和可靠性具有重大影响。为了更好 地实现园区的优化供能,通过同时关注 EH 的结构特征和优化运行来协同园区的能源优 化至关重要。由于目前对同时考虑 EH 系统结构及优化运行的联合优化问题缺乏研究, 因此,本文研究着重于建立快速识别系统最优结构并同时满足最优运行两个目标的数 学模型。具体地,本文提出了具有 12 个元件(包括能量输入、转化以及储存元件)的 I EH 模型。在该优化问题中,采用二进制变量来表示元件使用与否的状态,当二进制变 量为 时,代表该元件未被使用,而当二进制变量为 时,代表该元件处于使用的状 态中。通过 12 个元件的组合,本文提出了 144 种具有不同能量枢纽结构的优化场景, 并针对不同场景下的能量枢纽最优运行结果进行了比较。在对优化结果进行比较后可 以发现,对结构和运行进行统一优化之后得到的能量枢纽的最优结构与 144 种不同结 构中对运行进行优化后成本最低的结构是相同的。因此,本文所提的数学模型能够快 速准确地同时解决结构和运行的最优化问题。 3、基于对含有多个 EH 优化运行研究的不足,并考虑到可再生能源和储能系统在 微能源网中逐渐广泛应用的场景,本文提出了微能源网络(MEN)的协调优化运行的 方法,该微能源网络包括了光伏、风电、电网和天然气传输网、以及多个 EH。本文引 入了四种不同的运行方案(单纯考虑电力作用、考虑电能和天然气的作用、考虑电力 天然气以及可再生能源的作用、考虑电力天然气可再生能源以及储能共同的作用)来 评估能源类型和储能系统对微能源网性能的影响。求解的结果表明,与传统的单纯电 力供应网络相比,在考虑太阳能,风能和储能系统的能量枢纽基础上构造的能量枢纽 效率更高。 本文采用通用代数建模系统(GAMS)对所建立的数学模型进行求解,本文得到 的结论对构建小规模多能量需求的能源管理模型具有重要的指导意义。 关键词:微能源网;能量枢纽;优化运行;GAMS;BESS;最优结构 II Abstract Energy plays an essential role in all social and economic activities with deep engagement Energy cost is one of the key-driven factors contributing to industry manufactory and even other social areas such as culture and politics Energy security and environmental issues have facilitated human beings to explore energy-efficient, economical and environment-friendly models The energy network, combining various different energy categories, tends to be an innovative solution that attracts scientists’ eyeball worldwide Such energy network helps to enhance reliability, reduce environmental pollution, facilitate technology development in the energy system and promote energy sustainability Hereby energy hub (EH) can be used to build up energy network model In terms of micro energy network (MEN), the multi-energy network operation optimization is analyzed based on the EH model The solution is applied to the regions with highly intensive energy consumption, including residential areas, urban areas, etc Besides, the rapid urbanization has led to load volume expansion and diversified energy consumption The advanced technology of renewables integration, alongside with storage and conversion sections, has improved energy efficiency The new research proposal is required to optimize EH structure and operations of MEN model built up by multiple EH This dissertation especially aims to resolve the following key issues: 1/ This thesis presents an extended EH model to optimize total energy use costs for loads in residential areas, with the aim to fulfill the research gap in EH modeling and improving the operational efficiency of multiple forms of energy consumption This extended model considering the involves solar energy (provided by PV and SHE) combined with Battery energy storage system (BESS) The optimization problem is set up based on daily load demand (such as electricity, heat, and cooling) and time-of-use (TOU) energy prices A mathematical model is constructed with the objective of optimizing total energy cost during the day, including some constraints such as input-output energy balance of the EH, electricity price, capacity limitation of the system, and charge/discharge power of BESS Four operational cases based on different EH structures are compared to assess the effect of solar energy applications and BESS on operational efficiency The results show that the proposed III model predicts significant changes to the characteristics of electricity and gas power bought from utilities, leading to reduced total energy cost compared to other cases They also indicate that the model is appropriate for the characteristics of residential loads 2/ The structural and optimal operation of an energy hub has a tremendous influence on the hub’s performance and reliability In order to achieve the global optimum conditions for supplying energy, it is quite essential to develop the optimization research issues by focusing on hub system structure and operation simultaneously Based on the lack of study about joint optimization problem, this research also concentrates on establishing a mathematical model to rapidly identify the optimal model structure that simultaneously satisfies two objectives: optimizing operating costs and selecting the optimal operating structure The objective of the investigation is to penetrate into this joint optimization problem with a handy calculation method This thesis envisions an innovative methodology that prominently increases the synergy between structural and operational optimization and targets system cost affordability The generalized energy system structure is presented theoretically with all selective hub submodules, including electric heater (EHe) and solar sources block sub-modules To minimize energy usage cost, an energy hub is proposed that consists of 12 kinds of elements (i.e., energy resources, conversion, and storage functions) and is modeled mathematically in a General Algebraic Modeling System (GAMS), which indicates the optimal hub structure’s corresponding elements with binary variables (0, 1) Simulation results contrast with 144 various scenarios established in all 144 categories of hub structures, in which for each scenario the corresponding optimal operation cost is previously calculated These case studies demonstrate the effectiveness of the suggested model and methodology 3/ Previous peer research seldom addresses the problem of multiple EH optimal operations Considering integration of renewables and storage systems, the dissertation proposes a method to coordinate optimal operations in MEN containing electricity and natural gas networks, based on EH model The EH can be considered as the grand network node to contain various categories of energy The demands for electricity, heat, and cooling load can be fulfilled with the application of conversion and storage devices Four different operating scenarios are established to evaluate how energy sources and storage systems influence MEN In comparison to traditional electricity supply, the simulation results indicate that MEN built IV up by EH, with the integration of solar energy, wind energy and storage systems, is more efficient The General Algebraic Modeling System (GAMS) is applied to solve the optimal operating problems in this study The dissertation research contributes to the modeling and calculation for flexible and efficient energy management, meeting the demand for small-scale loads with various energy engagement Keywords: Micro energy network; Energy Hub; Optimal operation, General algebraic modeling system (GAMS); Optimal structure V Table of Contents 摘 要 I Abstract III Table of Contents VI Chapter Introduction and Literature review 1.1 Motivation 1.2 Literature Review 1.2.1 Micro energy network 1.2.2 Energy hub 1.2.3 Optimal operation of EH 10 1.3 Introduction to GAMS programming language 14 1.3.1.Algorithm and solver MINOS in GAMS programming language 16 1.3.2 Algorithm and solver BONMIN GAMS programming language 21 1.4 Research opbjectives 22 1.5 Thesis outline 23 Chapter Energy hub modeling to minimise residential energy costs considering solar energy and BESS 25 2.1 Introduction 25 2.2 Energy hub model for residential area load 26 2.2.1 Some energy supply models 26 2.2.2 The proposed EH model 27 2.3 Solar and BESS technologies 30 2.3.1 Solar 30 2.3.2 BESS technology 37 2.4 Mathematical model 39 2.4.1 The objective funcion 39 2.4.2 Constraints 40 2.5 Simulation Result 43 2.5.1 Database 43 2.5.2 Optimization results 46 VI South China University of Technology Doctoral Dissertation [14] Geidl M, Andersson G A modeling and optimization approach for multiple energy carrier power flow [C] Power Tech, 2005 IEEE Russia IEEE, 2005:1-7 [15] Geidl M Integrated Modeling and Optimization of Multi-Carrier Energy Systems [J] 2007 [16] DAIYiru, Jian W , Center C , et al Modeling and Optimization of Integrated Energy System Considering Synergy among Energy,Material and Emission Elements [J] Journal of Tongji University, 2015, 43(2):265-272 [17] Schulze M, Friedrich L, Gautschi M Modeling and optimization of renewables: applying the Energy Hub approach [C] IEEE International Conference on Sustainable Energy Technologies IEEE, 2009:83-88 [18] Mohammadi M, Noorollahi Y, Mohammadi-Ivatloo B, et al Energy hub: From a model to a concept – A review [J] Renewable & Sustainable Energy Reviews, 2017, 80:1512-1527 [19] International Energy Agency (2015) Photovoltaic power systems programme (PSPV) trends 2015 in photovoltaic application Report IEA-PVPS T1-27:2015 [20] Yang G, Marra F, Juamperez M, et al Voltage rise mitigation for solar PV integration at LV grids [J] Journal of Modern Power Systems & Clean Energy, 2015, 3(3):1-11 [21] Kazemi A, Sadeghi M Sitting and Sizing of Distributed Generation for Loss Reduction [C] Power and Energy Engineering Conference, 2009 APPEEC 2009 Asia-Pacific IEEE, 2009:1-4 [22] Blond S L, Li R, Li F, et al Cost and emission savings from the deployment of variable electricity tariffs and advanced domestic energy hub storage management [C] Pes General Meeting | Conference & Exposition IEEE, 2014:1-5 [23] Hida Y, Ito Y, Yokoyama R, et al A study of optimal capacity of PV and battery energy storage system distributed in demand side [C] Universities Power Engineering Conference IEEE, 2010:1-5 [24] Lu B, Shahidehpour M Short-term scheduling of battery in a grid-connected PV/battery system [J] IEEE Transactions on Power Systems, 2005, 20(2):1053-1061 [25] Leou R C An economic analysis model for the energy storage system applied to a distribution substation [J] International Journal of Electrical Power & Energy Systems, 2011, 34(1):132-137 [26] Zeng J, Zhang B, Mao C, et al Use of Battery Energy Storage System to Improve the Power Quality and Stability of Wind Farms [C] International Conference on Power System Technology, 2006 Powercon IEEE, 2007:1-6 [27] Rastegar M, Fotuhi-Firuzabad M, Lehtonen M Home load management in a residential energy hub [J] Electric Power Systems Research, 2015, 119(119):322-328 104 References [28] Bozchalui M C, Hashmi S A, Hassen H, et al Optimal Operation of Residential Energy Hubs in Smart Grids [J] IEEE Transactions on Smart Grid, 2012, 3(4):1755-1766 [29] Pazouki S, Haghifam M R Scheduling of Energy Hubs including CCHP, solar and energy storages in different climates [C] Electrical Power Distribution Networks Conference IEEE, 2015:101-106 [30] Bahrami S, Safe F A Financial Approach to Evaluate an Optimized Combined Cooling, Heat and Power System [J] Energy & Power Engineering, 2013, 5(5):352-362 [31] Shen X, Han Y, Zhu S, et al Comprehensive power-supply planning for active distribution system considering cooling, heating and power load balance [J] Journal of Modern Power Systems & Clean Energy, 2015, 3(4):485-493 [32] Liu M, Shi Y, Fang F Combined cooling, heating and power systems: A survey [J] Renewable & Sustainable Energy Reviews, 2014, 35:1-22 [33] Ha T T, Zhang Y J, Huang J A et al Energy Hub modeling for minimal energy usage cost in residential areas [C] Power and Renewable Energy IEEE, 2017:659-663 [34] Parisio A, Vecchio C D, Vaccaro A A robust optimization approach to energy hub management [J] International Journal of Electrical Power & Energy Systems, 2012, 42(1):98104 [35] Rastegar M, Fotuhi-Firuzabad M, Zareipour H, et al A Probabilistic Energy Management Scheme for Renewable-Based Residential Energy Hubs [J] IEEE Transactions on Smart Grid, 2017, 8(5):2217-2227 [36] Pazouki S, Haghifam M R, Oamaei J Effect of Wind Turbine, Solar Cells and Storages in Short Term Operation of Coupled Electricity and Gas Infrastructures in Different Climates [J] 2013 [37] Shahmohammadi A, Dalvand M M, Ghazizadeh M S, et al Energy hubs' structural and operational linear optimization with energy storage elements [C] International Conference on Electric Power and Energy Conversion Systems IEEE, 2012:1-6 [38] 王毅, 张宁, 康重庆 能源互联网中能量枢纽的优化规划与运行研究综述及展望[J] 中国电机工程学报, 2015, 35(22):5669-5681 [39] Shahmohammadi A, Moradi-Dalvand M, Ghasemi H, et al Optimal Design of Multicarrier Energy Systems Considering Reliability Constraints [J] IEEE Transactions on Power Delivery, 2015, 30(2):878-886 [40] Brooke A, Kendrick D, Meeraus A et al (2003) GAMS a user’s guide, GAMS development Corp, Washington, DC [41] 孙璐, 赵志刚 微电网技术综述[J] 科学与财富, 2015(17):115-115 105 South China University of Technology Doctoral Dissertation [42] 吴大为, 王如竹 分布式能源定义及其与冷热电联产关系的探讨[J] 制冷与空调, 2005, 5(5):1-6 [43] 杨勇平, 徐二树 分布式能量系统 [J] 现代电力, 2007, 24(5):72-76 [44] 徐建中 科学用能与分布式能源系统 [J] 中国能源, 2005, 27(8):10-13 [45] Ma T, Wu J, Hao L Energy flow modeling and optimal operation analysis of the micro energy grid based on energy hub [J] Energy Conversion & Management, 2017, 133:292-306 [46] 贾宏杰, 王丹, 徐宪东,等 区域综合能源系统若干问题研究 [J] 电力系统自动化, 2015(7):198-207 [47] Wu J, Yan J, Jia H, et al Integrated Energy Systems [J] Applied Energy, 2016, 167:155157 [48] 刘方泽, 牟龙华, 张涛, 等 微能源网多能源耦合枢纽的模型搭建与优化[J] 电力系统 自动化, 2018, 42(14):91-98 [49] Snell C, Carpenter A SU+RE Power: Energy Independence and the Sustainable Resilient Sun [J] Architectural Design, 2018, 88(1):64-71 [50] 龙惟定 绿色生态城区的智能能源微网[J] 暖通空调, 2013, 43(10):39-45 [51] 杨艳红, 裴玮, 齐智平 基于动态运行策略的混合能源微网规划方法[J] 电力系统自 动化, 2012, 36(19):30-36 [52] 谭兴国, 王辉, 张黎,等 微电网复合储能多目标优化配置方法及评价指标[J] 电力系 统自动化, 2014, 38(8):7-14 [53] 王成山, 洪博文, 郭力,等 冷热电联供微网优化调度通用建模方法[J] 中国电机工程 学报, 2013, 33(31):26-33 [54] Jeyakumar D N, Venkatesh P, Lee K Y Application of Multi Objective Evolutionary Programming to Combined Economic Emission Dispatch Problem [C] International Joint Conference on Neural Networks IEEE, 2007:1162-1167 [55] Abido M A A novel multiobjective evolutionary algorithm for environmental/economic power dispatch [C] Power Engineering Society Summer Meeting IEEE, 2003:1263-1268 vol.2 [56] 肖浩, 裴玮, 孔力,等 考虑光伏余电上网的微网出力决策分析及经济效益评估[J] 电 力系统自动化, 2014, 38(10):10-16 [57] 周志超, 郭力, 王成山,等 风柴储生物质独立微电网系统的优化规划设计[J] 电力系 统自动化, 2014, 38(7):16-22 [58] 李丰, 张粒子, 舒隽 考虑间歇式电源与储能的随机柔性优化调度方法[J] 电力系统 自动化, 2014, 38(5):1-7 106 References [59] 陈秋南, 韦钢, 朱昊,等 风电/微型燃气轮机混合微电网电压波动优化控制[J] 电力系 统自动化, 2014, 38(9):226-231 [60] 郭力, 许东, 王成山,等 冷电联供分布式供能系统能量优化管理[J] 电力系统自动化, 2009, 33(19):96-100 [61] 徐宪东, 贾宏杰, 靳小龙,等 区域综合能源系统电/气/热混合潮流算法研究[J] 中国电 机工程学报, 2015, 35(14):3634-3642 [62] Moeini-Aghtaie M, Abbaspour A, Fotuhi-Firuzabad M, et al A Decomposed Solution to Multiple-Energy Carriers Optimal Power Flow [J] IEEE Transactions on Power Systems, 2014, 29(2):707-716 [63] Geidl M, Andersson G Operational and topological optimization of multi-carrier energy systems [J] International Transactions on Electrical Energy Systems, 2010, 16(5):463-477 [64] Hajimiragha A, Canizares C, Fowler M, et al Optimal Energy Flow of integrated energy systems with hydrogen economy considerations [J] 2007:1-11 [65] Schulze M, Granado P C D Optimization modeling in energy storage applied to a multicarrier system [C] Power and Energy Society General Meeting IEEE, 2010:1-7 [66] Scala M L, Vaccaro A, Zobaa A F A goal programming methodology for multiobjective optimization of distributed energy hubs operation [J] Applied Thermal Engineering, 2014, 71(2):658-666 [67] Geidl M, Andersson G Optimal Coupling of Energy Infrastructures [C] Power Tech, 2007 IEEE Lausanne IEEE, 2008:1398-1403 [68] Arnold M, Andersson G Investigating renewable infeed in residential areas applying model predictive control [C] Power and Energy Society General Meeting IEEE, 2010:1-8 [69] Adamek F, Arnold M, Andersson G On Decisive Storage Parameters for Minimizing Energy Supply Costs in Multicarrier Energy Systems [J] IEEE Transactions on Sustainable Energy, 2013, 5(1):102-109 [70] Capuder T, Mancarella P Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options [J] Energy, 2014, 71(7):516-533 [71] Deng S, Wu L L, Wei F, et al Optimal operation of energy hubs in an integrated energy network considering multiple energy carriers [C] Innovative Smart Grid Technologies - Asia IEEE, 2016:1201-1206 [72] Samsatli S, Samsatli N J A general spatio-temporal model of energy systems with a detailed account of transport and storage [J] Computers & Chemical Engineering, 2015, 80:155-176 107 South China University of Technology Doctoral Dissertation [73] Nazar M S, Haghifam M R Multiobjective electric distribution system expansion planning using hybrid energy hub concept [J] Electric Power Systems Research, 2009, 79(6):899-911 [74] Kienzle F, Andersson G A greenfield approach to the future supply of multiple energy carriers [C] Power & Energy Society General Meeting, 2009 PES '09 IEEE, 2009:1-8 [75] Kienzle F, Trutnevyte E, Andersson G Comprehensive performance and incertitude analysis of multi-energy portfolios [C] PowerTech, 2009 IEEE Bucharest IEEE, 2009:1-6 [76] Favre-Perrod P, Kienzle F, Andersson G Modeling and design of future multi-energy generation and transmission systems [J] European Transactions on Electrical Power, 2010, 20(8):994-1008 [77] Kienzle F, Ahcin P, Andersson G Valuing Investments in Multi-Energy Conversion, Storage, and Demand-Side Management Systems Under Uncertainty [J] IEEE Transactions on Sustainable Energy, 2011, 2(2):194-202 [78] Salimi M, Ghasemi H, Adelpour M, et al Optimal planning of energy hubs in interconnected energy systems: a case study for natural gas and electricity[J] Generation Transmission & Distribution Iet, 2015, 9(8):695-707 [79] Ren H, Gao W, Ruan Y Optimal Sizing for Residential CHP System [J] Applied Thermal Engineering, 2008, 28(5):514-523 [80] Pazouki S, Haghifam M R Optimal planning and scheduling of energy hub in presence of wind, storage and demand response under uncertainty [J] International Journal of Electrical Power & Energy Systems, 2016, 80:219-239 [81] Zhang X, Shahidehpour M, Alabdulwahab A, et al Optimal Expansion Planning of Energy Hub With Multiple Energy Infrastructures [J] IEEE Transactions on Smart Grid, 2017, 6(5):2302-2311 [82] Sheikhi A, Ranjbar A M, Safe F A novel method to determine the best size of CHP for an energy hub system [C] International Conference on Electric Power and Energy Conversion Systems IEEE, 2011:1-7 [83] Sheikhi A, Rayati M, Ranjbar A M Energy Hub optimal sizing in the smart grid; machine learning approach [C] Innovative Smart Grid Technologies Conference IEEE, 2015:1-5 [84] Koeppel G, Andersson G Reliability modeling of multi-carrier energy systems [J] Energy, 2009, 34(3):235-244 [85] Haghifam M R, Manbachi M Reliability and availability modelling of combined heat and power (CHP) systems [J] International Journal of Electrical Power & Energy Systems, 2011, 33(3):385-393 108 References [86] Almassalkhi M, Hiskens I Cascade mitigation in energy hub networks [C] Decision and Control and European Control Conference IEEE, 2011:2181-2188 [87] Almassalkhi M, Hiskens I Impact of energy storage on cascade mitigation in multienergy systems [C] Power and Energy Society General Meeting IEEE, 2012:1-8 [88] Beigvand S D, Abdi H, Scala M L Optimal operation of multicarrier energy systems using Time Varying Acceleration Coefficient Gravitational Search Algorithm [J] Energy, 2016, 114:253-265 [89] Zhang X, Che L, Shahidehpour M, et al Reliability-Based Optimal Planning of Electricity and Natural Gas Interconnections for Multiple Energy Hubs [J] IEEE Transactions on Smart Grid, 2017, 8(4):1658-1667 [90] Arnold M, Negenborn R R, Andersson G, et al Distributed control applied to combined electricity and natural gas infrastructures [C] International Conference on Infrastructure Systems & Services: Building Networks for A Brighter Future IEEE, 2010:1-6 [91] Kortela J, Jämsä-Jounela S L Modeling and model predictive control of the BioPower combined heat and power (CHP) plant [J] International Journal of Electrical Power & Energy Systems, 2015, 65:453-462 [92] Kaviani A K, Riahy G H, Kouhsari S M Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages [J] Renewable Energy, 2009, 34(11):2380-2390 [93] Galus M D, Andersson G Power system considerations of plug-in hybrid electric vehicles based on a multi energy carrier model [C] Power & Energy Society General Meeting, 2009 PES '09 IEEE IEEE, 2009:1-8 [94] Sun Q, Zhao M, Yue C, et al Optimal Energy Flow of Multiple Energy Systems in Energy Internet [J] Proceedings of the Csee, 2017, 37(6):1590-1598 [95] Pazouki S, Haghifam M R, Moser A Uncertainty modeling in optimal operation of energy hub in presence of wind, storage and demand response [J] International Journal of Electrical Power & Energy Systems, 2014, 61:335-345 [96] Galus M D, Koch S, Andersson G Provision of Load Frequency Control by PHEVs, Controllable Loads, and a Cogeneration Unit [J] IEEE Transactions on Industrial Electronics, 2011, 58(10):4568-4582 [97] Galus M D, Andersson G Integration of Plug-In Hybrid Electric Vehicles into energy networks [C] PowerTech, 2009 IEEE Bucharest IEEE, 2009:1-8 [98] Pazouki S, Haghifam M R, Pazouki S Short term economical scheduling in an energy hub by renewable and demand response [C] International Conference on Electric Power and Energy Conversion Systems IEEE, 2014:1-6 109 South China University of Technology Doctoral Dissertation [99] Pazouki S, Haghifam M R, Olamaei J Short term scheduling of multi carrier systems through interruptible load and Energy Storage toward future sustainable energy needs[C] International Conference on Electrical and Electronics Engineering IEEE, 2013:77-81 [100] Bozchalui M C, Cañizares C A, Bhattacharya K Optimal Energy Management of Greenhouses in Smart Grids [J] IEEE Transactions on Smart Grid, 2015, 6(2):827-835 [101] Chicco G, Mancarella P Matrix modelling of small-scale trigeneration systems and application to operational optimization [J] Energy, 2009, 34(3):261-273 [102] Proietto R , Arnone D , Bertoncini M , et al Mixed heuristic-non linear optimization of energy management for hydrogen storage-based multi carrier hubs [C] Energy Conference IEEE, 2014:1019-1026 [103] Ahčin P, Šikić M Simulating demand response and energy storage in energy distribution systems [C] International Conference on Power System Technology IEEE, 2010:1-7 [104] Mancarella P, Chicco G Real-Time Demand Response From Energy Shifting in Distributed Multi-Generation [J] IEEE Transactions on Smart Grid, 2013, 4(4):1928-1938 [105] Leon D, Pulmones N Design and simulation of a fast-charging station for plug-in hybrid electric vehicle (PHEV) batteries [J] 2011 [106] Hu Y, Song X, Cao W, et al New SR Drive With Integrated Charging Capacity for Plug-In Hybrid Electric Vehicles (PHEVs) [J] IEEE Transactions on Industrial Electronics, 2014, 61(10):5722-5731 [107] 顾泽鹏, 康重庆, 陈新宇,等 考虑热网约束的电热能源集成系统运行优化及其风电 消纳效益分析[J] 中国电机工程学报, 2015, 35(14):3596-3604 [108] Soroudi A , Mohammadi-Ivatloo B , Rabiee A Energy Hub Management with Intermittent Wind Power [J] Green Energy & Technology, 2014, 118(14):413-438 [109] Sheikhi A, Rayati M, Bahrami S, et al Integrated Demand Side Management Game in Smart Energy Hubs [J] IEEE Transactions on Smart Grid, 2015, 6(2):675-683 [110] Neyestani N, Yazdani-Damavandi M, Shafie-Khah M, et al Stochastic Modeling of Multienergy Carriers Dependencies in Smart Local Networks With Distributed Energy Resources[J] IEEE Transactions on Smart Grid, 2017, 6(4):1748-1762 [111] Tian X, Zhao R Energy Network Flow Model and Optimization Based on Energy Hub for Big Harbor Industrial Park [J] Journal of Coastal Research, 2015, 73:298-303 [112] Krause T, Kienzle F, Liu Y, et al Modeling interconnected national energy systems using an energy hub approach[C] PowerTech, 2011 IEEE Trondheim IEEE, 2011:1-7 [113] Geidl M, Andersson G Optimal Power Flow of Multiple Energy Carriers [J] IEEE Transactions on Power Systems, 2007, 22(1):145-155 110 References [114] Moeini-Aghtaie M, Dehghanian P, Fotuhi-Firuzabad M, et al Multiagent Genetic Algorithm: An Online Probabilistic View on Economic Dispatch of Energy Hubs Constrained by Wind Availability [J] IEEE Transactions on Sustainable Energy, 2014, 5(2):699-708 [115] Del Real A J, Galus M D, Bordons C, et al Optimal power dispatch of energy networks including external power exchanges [C] Control Conference IEEE, 2009:3616-3621 [116] Carradore L, Turri R Modeling and simulation of multi-vector energy systems [C] PowerTech, 2009 IEEE Bucharest IEEE, 2009:1-7 [117] Ghasemi A, Hojjat M, Javidi M H Introducing a new framework for management of future distribution networks using potentials of energy hubs [C] Smart Grids IEEE, 2012:1-7 [118] Bruce A Murtagh, Michael A Saunders A projected Lagrangian algorithm and its implementation for sparse nonlinear constraints [J] Mathematical Programming Studies, 1982, 16(3):84-117 [119] https://www.gams.com/latest/docs/S_BONMIN.html [120] Gupta O K BRANCH AND BOUND EXPERIMENTS IN NONLINEAR INTEGER PROGRAMMING [J] Management Science, 1980, 31(12):1533-1546 [121] Duran M A , Grossmann I E An outer-approximation algorithm for a class of mixedinteger nonlinear programs [J] Mathematical Programming, 1986, 36(3):307-339 [122] Fletcher R, Leyffer S Solving mixed integer nonlinear programs by outer approximation [J] Mathematical Programming, 1994, 66(1-3):327-349 [123] Quesada I, Grossmann I E An LP/NLP based branch and bound algorithm for convex MINLP optimization problems [J] Computers & Chemical Engineering, 1991, 16(1011):937-947 [124] Bonami P, Biegler L T, Conn A R, et al An algorithmic framework for convex mixed integer nonlinear programs [J] Discrete Optimization, 2008, 5(2):186-204 [125] Abhishek K , Leyffer S , Linderoth J FilMINT: An Outer Approximation-Based Solver for Convex Mixed-Integer Nonlinear Programs[J] INFORMS Journal on Computing, 2010, 22(4):555-567 [126] Pierre Bonami, Gérard Cornuéjols, Andrea Lodi, et al A Feasibility Pump for mixed integer nonlinear programs [J] Mathematical Programming, 2009, 119(2):331-352 [127] Han J, Mol A P J, Lu Y Solar water heaters in China: A new day dawning [J] Energy Policy, 2010, 38(1):383-391 [128] Machinda G T , Chowdhury S , Arscott R , et al Concentrating Solar Thermal Power Technologies: A review [C] India Conference IEEE, 2012:1-6 111 South China University of Technology Doctoral Dissertation [129] Mautner F, Weiss W Solar Heat Worldwide - Markets and Contribution to the Energy Supply 2012 [J] International Energy Agency, 2012 [130] 刘世隆, 邓薇 塔式太阳能热发电技术在我国发展现状与前景分析[J] 电气技术, 2016, 17(10):8-10 [131] Library W P Solar Energy Generating Systems [J] Automata Languages & Programming, 2007(October):453-465 [132] Pannase V R , Nanavala H B A review of PV technology power generation, PV material, performance and its applications [C] International Conference on Inventive Systems & Control IEEE, 2017:1-5 [133] Duryea S, Islam S, Lawrance W A battery management system for stand-alone photovoltaic energy systems [J] IEEE Industry Applications Magazine, 1999, 7(3):67-72 [134] Jamali A A, Nor N M, Ibrahim T Energy storage systems and their sizing techniques in power system ? A review [C] Energy Conversion IEEE, 2016:215-220 [135] Zakeri B, Syri S Electrical energy storage systems: A comparative life cycle cost analysis [J] Renewable & Sustainable Energy Reviews, 2015, 42(C):569-596 [136] Eyer J M, Corey G P Energy storage for the electricity grid : benefits and market potential assessment guide : a study for the DOE Energy Storage Systems Program [J] Geburtshilfe Und Frauenheilkunde, 2010, 45(5):322-5 [137] Poullikkas A A comparative overview of large-scale battery systems for electricity storage [J] Renewable & Sustainable Energy Reviews, 2013, 27(6):778-788 [138] Zhou Z, Benbouzid M, Charpentier J F, et al A review of energy storage technologies for marine current energy systems [J] Renewable & Sustainable Energy Reviews, 2013, 18(2):390-400 [139] Kousksou T, Bruel P, Jamil A, et al Energy storage: Applications and challenges [J] Solar Energy Materials & Solar Cells, 2014, 120(1):59-80 [140] Kintner-Meyer M, Jin C, Balducci P, et al Energy storage for variable renewable energy resource integration — A regional assessment for the Northwest Power Pool (NWPP) [C] Power Systems Conference and Exposition IEEE, 2011:1-7 [141] Brijs T, Geth F, Siddiqui S, et al Price-based unit commitment electricity storage arbitrage with piecewise linear price-effects [J] Journal of Energy Storage, 2016, 7:52-62 [142] Beardsall J C, Gould C A, Al-Tai M Energy storage systems: A review of the technology and its application in power systems [C] Power Engineering Conference IEEE, 2015:1-6 [143] Leadbetter J, Swan L G Selection of battery technology to support grid-integrated renewable electricity [J] Journal of Power Sources, 2012, 216(11):376-386 112 References [144] Beaudin M, Zareipour H, Schellenberglabe A, et al Energy storage for mitigating the variability of renewable electricity sources: An updated review [J] Energy for Sustainable Development, 2010, 14(4):302-314 [145] Tang Y, Song H, Hu F, et al Investigation on TOU pricing principles [C] Transmission and Distribution Conference and Exhibition: Asia and Pacific, 2005 IEEE/PES IEEE, 2005:1-9 [146] Home Electricity Price (2014) http://www.opc.state.md.us/ConsumerCorner/Electricity.aspx Accessed 20 Otc 2016 [147] Gas Commodity Fact Sheet for Maryland Public Service Commission(2014) http://www.psc.state.md.us/gas/ Accessed 20 Otc 2016 [148] Mohammad H B, Mahmud F F , Abbas R G , et al Energy Storage in Renewable-Based Residential Energy Hubs[J] Iet Generation Transmission & Distribution, 2016, 10(13):31273134 [149] A Guide to Electricity Charges Market Participants Available online: http://www.ieso.caimoweb/role/wholesaleCharges.asp (accessed on 10 October 2017) [150] Fan H, Chen Q , Liu W , et al Optimal scheduling for energy hub in power markets[C] Innovative Smart Grid Technologies-asia IEEE, 2016 [151] HOUWING, Michiel, NEGENBORN, et al Demand Response With Micro-CHP Systems [J] Proceedings of the IEEE, 2014, 99(1):200-213 [152] Li J , Wang S, Ye L , et al A coordinated dispatch method with pumped-storage and battery-storage for compensating the variation of wind power [J] Protection and Control of Modern Power Systems, 2018, 3(1):2 [153] Martinezmares A, Fuerteesquivel C R A Unified Gas and Power Flow Analysis in Natural Gas and Electricity Coupled Networks [J] IEEE Transactions on Power Systems, 2012, 27(4):2156-2166 [154] Mokhatab S, Poe W A, Speight J G Preface[J] Handbook of Natural Gas Transmission & Processing, 2006:xxi–xxii [155] Ha T T , Zhang Y , Hao J , et al Energy Hub’s Structural and Operational Optimization for Minimal Energy Usage Costs in Energy Systems [J] Energies, 2018, 11(4):707 113 South China University of Technology Doctoral Dissertation List of Publications 一、已发表(包括已接受待发表)的论文,以及已投稿、或已成文打算投稿、或拟成文投稿的 论文情况(只填写与学位论文内容相关的部分) : 序 号 作者(全体作 者,按顺序排 列) Thanhtung Ha, Yongjun Zhang, V.V Thang, Jianang Huang 题目 发表或投稿刊 物名称、级别 Energy hub modeling Journal of to minimize residential Modern Power energy costs Systems and considering solar Clean Energy energy and BESS MPCE 发表的卷 期、年 月、页码 相当于学 位论文的 哪一部分 (章、 节) 被索引 收录情 况 Chapter SCI Chapter SCI Chapter SCI Chapter SCOPUS May 2017, Volume 5, Issue 3, pp 389– 399 Energy Hub’s Thanhtung Ha, Structural and Yongjun Zhang, Operational Jinbao Hao, V.V Optimization for Thang, Canbing Minimal Energy Usage Li, Zexiang Cai Costs in Energy March Energies 2018, 11(4):707 Systems Optimal operation of the micro energy Thanhtung Ha, Yongjun Zhang, Jinbao Hao, V.V Thang network considering IEEE ACCESS solar, wind, and energy storages system based 拟投稿 on energy hub modeling V.V Thang, Yongjun Zhang, Thanhtung Ha, Shiling Liu Optimal operation of International energy hub in Journal of competitive electricity Energy and market considering Environmental uncertainties Engineering 114 September 2018, Volume 9, Issue 3, pp 351– 362 List of Publications 陈泽兴,张勇 军,许志恒, 蔡泽祥, 计及需求价格弹性的 区域能源中心建模与 June 2018 电力系统自动 化 日前优化调度 EI Vol,42 No,12 27-35 Thanhtung Ha Conference: 978-1-5090- 2016 IEEE 3069-9 Thanhtung Ha, Energy Hub modeling International Yongjun Zhang, for minimal energy Conference on Jianang Huang, usage cost in residential Power and V.V Thang areas Renewable 10.1109/ICPRE 2016.7871161 Chapter EI Chapter EI Oct 2016, pp Energy (ICPRE) Conference: Thanhtung Ha, Optimal operation of Yongjun Zhang, energy hub with Jinbao Hao, T different structures for Hong Anh minimal energy usage Pham cost 2017 2nd Thanhtung Ha, Yongjun Zhang Yongjun Zhang, Thanhtung Ha, T Hong Anh Pham 2157-8 Conference on 10.1109/ICPRE Power and 2017.8390495 Renewable Energy Sept 2017, pp 31-37 Conference: 978-1-5090- An Optimal Control 2016 IEEE 3069-9 Method of Ice-storage International Air Conditioning Based Conference on on Reducing Direct Power and Cooling Cost Renewable Sequentially Energy (ICPRE) Jinbao Hao, 978-1-5386- International (ICPRE) Jianang Huang, 659–663 10.1109/ICPRE 2016.7871161 Oct 2016, pp 264–268 Demand Response PowerCon2018 Scheduling Strategy for -11th Air-conditioning International PowerCon2018 Considering the Users’ Conference on 已录用 Somatosensory Power System Compensation Technology 115 EI EI South China University of Technology Doctoral Dissertation 2019 Thanhtung Ha, Yongjun Zhang, 10 Jinbao Hao, T Hong Anh Optimal operation of the micro energy network based on energy hub modeling Pham International Conference on Environment 拟投稿 Chapter EI Sciences and Renewable Energy 2019 Optimal Planning of 11 V.V Thang, Thanhtung Ha, Energy Hubs International Considering Renewable Journal of February 2019, Energy Sources and Sustainable Vol 8, No 1, Battery Energy Storage Energy and 36-47; System Environmental Research 116 国际 Chapter 期刊 Acknowledgements Acknowledgments First of all, I would like to express my sincere gratitude towards Professor Zhang Yong Jun for his continuous support and encouragement of my Ph.D study and research, as well as his instruction and guidance under which this thesis is completed He is a motivating, patient and enthusiastic person from whom I have learned not only not only valuable knowledge but also the professional working attitude, the passion and the ability to confront challenges I am also deeply thankful to the teachers of School of International Education, School of Electric Power System and South China University of Technology for giving me the opportunities to pursue my further research here, as well as to provide me with the best conditions to study Chinese, specialized subjects in an incredible learning environment during my years of settling and studying in Guangzhou, China My great thankfulness goes to my fellow students in my research lab who have given me precious support to overcome the language barrier, to adapt myself to specialized and professional knowledge, and to create the existence of this thesis I would like to express my deep gratitude to my parents, relatives and friends for their continuous and unconditional encouragement through thick and thin Especially, I would like to thank my dear wife – Mrs Pham Thi Hong Anh – who always stands beside me and walks with me along my journey And finally, my thanks are for China and Chinese people for the wonderful things I have received Thank you very much! 117 .. .Optimal operation of Micro energy networks based on energy hub model A Dissertation Submitted for the Degree of Doctor of Philosophy Candidate:Ha Thanh Tung Supervisor:Prof YongJun Zhang... 1/ The problem of optimal operation of single EH a Basic model Operating optimal energy system is a kind of optimal distribution of different types of energy to meet the operational objectives... operation of the micro energy networks on the basis of the EH model: Traditional forms of energy distribution through electrical systems have shown significant effects of renewable energy and energy