1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài tập cơ học giải tích

13 15 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 604,62 KB

Nội dung

Journal o f Technical Physics, J Tech P h y s 21, 2, 253 -2 , 1980 Polish Academy o f Sciences, Institute o f Fundamental Technological Research, Warszawa NONLINEAR OSCILLATIONS OF THE THIRD ORDER SYSTEMS PART m PARAMETRIC OSCILLATION NGUYEN V A N D A O (H A N O I) In tro d u c tio n "he t h e o r y o f t h e p a r a m e t r i c o s c i l l a t i o n o f t h e s e c o n d - o r d e r s y s t e m h a s b e e n i n v e s t g a t e d in a l o t o f p u b l i c a t i o n s F o r a l o n g t i m e it h a s p l a y e d a n i m p o r t a n t r o l e i n t h e theory o f n o n l i n e a r o s c i l l a t i o n s R e c e n t l y , in s o m e p r o b l e m s o f t h e d y n a m i c s o n e c a n m ee t h e p a r a m e t r i c o s c i l l a t i o n o f t h e t h ir d - o r d e r s y s t e m [7], t o t h e s t u d y o f w h i c h t h i s charter is devoted (cf [11, 12]) n t h e first S e c t i o n t h e a p p r o x i m a t e s o l u t i o n o f t h e m o t i o n e q u a t i o n is c o n s t r u c t e d T he s t a t i o n a r y s o l u t i o n s a re s t u d ie d The s e c o n d S e c t i o n i s c o n c e r n e d w i t h t h e s t a b i li t y c o n d i t i o n o f t h e s t a t i o n a r y o s c i l l a tio i T h e R o u t h - H u r w i t z c r it e r ia a re t a k e n o u t The i n f l u e n c e o f t h e C o u l o m b f r ic t i o n o n t h e p a r a m e t r i c o s c i l l a t i o n is c o n s i d e r e d in t h e S e c t I n th is c a s e t h e r e s o n a n c e c u r v e h a s t h e d o s e d f o r m n S e c t t h e i n f l u e n c e o f t h e t u r b u l e n t f r ic t i o n o n t h e p a r a m e t r i c o s c i l l a t i o n is s t u d i e d T h i f r ic t i o n lim its t h e g r o w t h o f t h e p a r a m e t r i c o s c i l l a t i o n a n d c a u s e s a c o n s i d e r a b l e c h a i g e i n t h e r ig id it y o f t h e s y s t e m in v e s t i g a t e d U n d er th e in flu en ce o f th e c o m b in a tio n f r ic t i o n ( S e c t ), t h e r e s o n a n c e c u r v e is s im la r i n q u a l i t y t o t h a t in t h e c a s e o f t h e C o u l o m b f r ic t io n I t is o f c l o s e d f o r m a s w e l l C o n s tru c tio n o f A p p ro x im a te S o lu tio n L et u s c o n s i d e r t h e p a r a m e t r i c o s c i l l a t i o n o f t h e s y s t e m d e s c r ib e d b y t h e th ir d o r d e r d if e r e n t ia l e q u a t i o n o f t h e f o r m : (1 ) w bre x ' + Ệ x + Q 2x + Ệ Q 2x + e [ k x + h x + R ( x , x , x ) - c x c o s y t ] = , Ệ ,Q ,k ,h ,c ,y are c o n sta n ts a n d R ( x , x , x ) is t h e f u n c t i o n c h a r a c t e r i z i n g t h e n c i l i n e a r fr ic tio n W e a s s u m e t h a t t h e r e is a r e s o n a n c e r e la t i o n eA = Q 2(l -Tj2), T h e n , E q ( 1 ) c a n b e w r it t e n a s : ri = - ^ Q - Nguyen Van Dao Ỉ54 ^hen f ( x , X , x ) = A X + ỆẠx + k x + h x 3+ R ( x , X, x ) ) A p a rtia l t w o - p a r a m e t e r s s o lu t io n 1.4) X = ỠCOS o f ( ) is f o u n d in th e se r ie s: + EU1 ị a , ip, - y / j + e2u ị a , ip, - y f j + + n w i i c h us ( a , y , 0) a r e p e r i o d i c f u n c t i o n s o f a n d w i t h - t h e p e r i o d 71, a n d a, ip a r e u n cto n s o f tim e d e t e r m i n e d f r o m ~ = th e set o f e q u a tio n s: e A l ( a , x p ) + £ 2A 2{ a , y ) + •••, e B L( a , ỳ ) + e 2B 2( a , y>) + ;i.5 ) ^ = ) d e t e r m i n e t h e f u n c t i o n s US, A S, B S, f i r s t w c c a l c u l a t e : dx y ~dt = d 2x I A • n a s m ( p + s \ A Xc o s ( p —a B 1s m ( p + y2 I — acoscp+ CUị \ + £ • •9 d 2u i \ —y A ! s i n (p —y a B COSẹ?+ - Ỵ T I + ) í / 3A' y3 - ^ - 3- = / 3 ổ 3Mj a s m 9?+ £ I — ~ ^ - y M cosẹ> + fl-Sj SÌ1199 + —^ I + £ \ •••’

Ị N )W , w e e x p a n d t h e f u n c t i o n / o in t h e F o u r i e r ser ie s: 00 ; i ) / o = J j ? m= [ qm( a ) c o s m ( p + p m(a )s i nm (p ] , - / o + ữcos^ ccos Nonlinear oscillations o f the third order systems Part III 255 lere 2.71 q0 = — Ị f i a c o s q ) , — - y ứ s i n ọ ? , — ^ ị - ứ c o s ọ ? ! d(p, o ) ' 271 I qm = — J" / Ị a c o s ẹ ? , — ~ - a s i n ẹ > , — ^ - a c o s ọ ? ! cosmcpdcp, o ' 271 pm= — Ị / Ị a c o s ) , — - y ứ s i n ọ ? , — —- a c o s ^ Ị smmĩpdcp Ố ' T h e f u n c t i o n « ! s a t i s f y i n g E q ( ) w i l l b e f o u n d in t h e f o r m ^ 1 ) [G„(a, yj)cosn

+/>ms ( p + p msinm ) m = B y c o m p a r i n g t h e h a r m o n i c s sinọ?, COS op, o n e o b t a i n s : y Al +yỆaB1 = - - ^ c o s rp+q^ ( 12) y Ệ A i-^ -a B i = - - ^ - s in 2y + P i B y c o m p a r in g th e o th e r h a rm o n ics, w e get: n g u y en van ưao On s o l v i n g E q s (1 ), w e h a v e: (1 , , - - ị - a c c o s v > j ổ 3, — c " = y -y / y £ I |I - j - r t ứ c ct ou si2Yy >' 1+— -— ^ - U( a c s i n y I ỗ 3n + £/>„ - n = r („*_!) Ị^+rl^Ị From ( 1 ), w e h a v e Q £ < / sin99> + í < / c o sẹ > > — - Ị - a c COS ^ - * ^ Ạ-OCỆs i n y i ( l + £ 2) = ’ ( :) £ < / o c os

— í < / sinẹ>> + - ^ -a c s in y > — ^ -flc c o s2 y > Bl = a ( Ệ + ũ 2) ’ w h e i e ( F ) i s t h e o p e r a t o r o f t h e a v e r a g i n g f u n c t i o n F o n t i m e B y p u t t i n g i n E q (1 fo f n m E q s ( ) a n d ( ) a n d c a l c u l a t i n g , w e h a v e t h e f o l l o w i n g e q u a t i o n s o f t h e Í a p p r o x im a tio n : da dt = £ ĩ-^ -(fc —£ Q 2h ) a — -^ -ứ cc o s2y — -^ -^ s in ^ y + i? ! j , Ệ2 + Q [ ( 1.10 dip dt = ■ E a ( i + Q*) Ị^— ( Ệ + & 2) A a + - ^ - ( Ệ k + Q * h ) a + ^ - s i n xp- ac ■~ — Ệ Q o s t p + R Y w hec 2Ệ R i = < JR0 COSỌỊ>4- — < /?0 sino9>, y 'l.n 2Ẽ R = — ( R c o s ( p ) - ( R sinq)'), y i v y R q = R ị a c o s c p , — | - a s i n (p, — — acoscp T tu s, in th e first a p p r o x im a t i o n w e h a v e a p a r tia l s o lu t io n o f E q (1 ) in t h e fo r L Nonlinear oscillations o f the third order systems Part ỈII 257 iere a and Iff are th e s o l u t i o n o f E q s ( 1 ) T h e r e f in e m e n t o f t h e first a p p r o x i m a t i o n i s : Ệ Ệq„—Q n p „ + \ - ị n a c s m y ) — ~ a c c o s t p j ỗ 3n 9) Y = a c OS - ~Ó2{ n - ỉ ) ( Ệ + n 2Q 2) \ X Qnq„ + Ệp„ — ị ^ - n a c cos2ĩf + y - ứ c s i n ^ Ị < 3n X C O S /7ọ? + s i n H(p Q 20 ? - ì ) ( Ệ + n 2Q 2) th a a n d y> b e i n g t h e s o l u t i o n o f E q (1 ) T h e sta tion ary s o lu tio n o f th e se t ( 1 ) is d e t e r m i n e d f r o m t h e e q u a t i o n s : ^ - a sin2ĩp + ^ - c o s l i f ly = - — { k - Ệ Q 2h ) a ị + R y , o ) ~ ~ a c o $2 y ' 2y s i n y = — (Ệ2 + Q 2) A a + - ^ - ( Ệ k + Q 4h)ao + R y 4y By e l i m i n a t i n g t h e p h a s e y), w e o b t a i n t h e e q u a t i o n fo r t h e a m p l i t u d e a0 : W(ao , y ) = ) h ere 2 ) W ( a , y) : ~>QZ Ệ A + ka2° + a 0( f + Q 2) V + > Rl + c 02 R e la tio n ( ) is p l o t t e d in F ig fo r th e c a s e R = 0, -Ệ = ũ = Ỉ, c* = , kị, —0.1 and / * = (curve 1), /7 * = 0.05 (curve 2) and / 7* = 0.1 (curve 3) F rom this cure, it is s e e n that with increacing h, the m axim u m o f the am plitudes decreases and l e nonlinear s y s t e m b e c o m e s h a rd er I n F ig t h e r e s o n a n c e c u r v e s are p r e s e n t e d f o r i e case R = 0, Ệ = o :urve 2), /c* = - = \, c* = 0 , /?* = 0.1 a n d k * = (c u r v e 1), k* = (curve 3) With decreasing k , the m axim um o f the am plitude e c r e a s e s a n d t h e n o n l i n e a r s y s t e m b e c o m e s s o fte r F i J o u r n a l T e c h n P h y s /8 -0 ig Ịả'* = - Q ĩ k , / * — c * — p T c j- Nguyen Van Dao B \ contrast with the parametric oscillation in the well k n ow n second-order system , ie riiidity o f the nonlin ear system and the m ax im u m o f the am plitudes o f oscillation ĩr e te p e n d o n t h e c o m b i n a t i o n o f th e p a r a m e t e r s h a n d k T h e s y s t e m c o n s i d e r e d is h art s y s t e m i f T = £ k + Q Ah > a n d a s o f t o n e i f T < I f Q = l e n tie m a x i m u m ỆQ2h — k is p o s i t i v e , o f a m p l i t u d e s d e c r e a s e s w i t h i n c r e a s i n g Q S t a b ilit y o f S ta tio n a ry O s c illa t io n F i s t w e shall c o n s i d e r t h e s ta b ilit y o f t h e s t a t i o n a r y s o l u t i o n a0 Ỷ o f E q s ( ) ubsttuting in them a = a0 + ỗ a , 'iíh í0 , y = ip0 + y ) xp0 being the solu tion o f Eqs (1.20), we have the follow ing variational eq u ation s: ỊỊ^ -(& -£í22/7)ứẳ + aoỊ— Ị j < c - (Ậ2 + Q 2) A a + Ệ 2+ Q dt 1) + *tfỉc+ữ*h)al - 2y ỗ y > Ị, cỉôyj dt I Ả - ( Ệ k + Q V i ) a + Ị * ì Ị ] a + ị j { k - Ệ Q 2h ) a l + ~ R ^ ỏ v } - Ệ2 + Q Tie characteristic eq u ation o f this system is: 2 ) Ằ2 ~ Z  + S = 0, yheri z = ễ2+ Q 2.3) r ~ ( i ' - ỉ ữ 2/ i ) « ỗ + — s 2a = [ /1 Q 2(Ệ2 + Q 2) X y ( 0 * 1) ' ] Ỵ y ( Ệ k + L)4h) a0 - f 4Í 22 ( — + - ị ( k + Q 6h 2) a ị + + 2Q + Ệ2 + w 3ao(fc- í f i V , ) ( f } + + « ( £ ) ( £ ) +’ +4 ía 0ă í\ a ă0 i Nonlinear oscillations o f the third order systems , Pari III rh e e x p r e ssio n z c a n b e a l s o w r i t t e n in t h e f o r m : ( ‘ ) w her 25! is o f t h e f o r m e 2a dW Q ( Ệ + Q 2) da0 (1 2 ) C o n s e q u e n t ly , th e sta b ility c o n d it io n o f s ta tio n a r y so lu t i o i is: (2.3 ( k - Ệ Q 2h ) a l + ( a 0R i y < 0, Ơ ÌV (2.0 ơa0 > M o w , let u s c o n s i d e r a s p e c i a l c a s e o f t h e s t a b i l i t y o f e q u i l i b r i u m a = 0, w h e n th sysem (1 ) h a s th e fo r m : da £ [ i/ r = ~ỆĨ £2 + + Õ £ T [ 88 c r, ca - _ „ 1c c o s ^ ~ ’ ( ') dtp — - cya- ft c o s 2o ^ — ỗữ, y = ^o + ổ y a n d th e va ria tio n a l e q u a tio n s are: EC = + I y \ Ị cos “ + ^°/ (2.r V + Q2)A 4- -ysin 2vj0 - f cos2y>o = ỗứ or —— = eft ( 2.0 £C • M c - ■■_ 2yýỆr+ ữ £C = a rete 00, (Ệ + Q 2) A - \/ ệ + Q c o s ( t Po + O) ỗ a , - 2y ( Ệ + Q 2) sin (2 u ’o 4- v ) V 2Ệ • T h e se c o n d E q (2 ) y ie ld s: c o s ( tpo + 0) — —- A y i + Q sin (2 Y’o + ớ) = ± ~ \ / c — ( Ệ + £} 2) A a m t h e r e f o r e t h e first E q ( ) is o f t h e f o r m 1: dò a ~ d t~ ^ ỹ | = f » V - T F ’ + iF ) * í« H en ce, th ere f o llo w s th e sta b ility c o n d it io n o f eq u ilib r iu m a = c Ml > 8* ]/ệ2 + Q Nguỵetì Van Dao 2.10) rị1 < , ĩ]2 > H - — = = = = , 2í 2 | / | + £ ĩ] = y/2í2 2& > /f 2+ í 22 In th e fig u r e s p r e s e n t e d t h e s t a b i li t y c o n d i t i o n s a r e s a tis fie d o n t h e l i n e s in b o l d fa c e T h e In flu e n c e o f C o u lo m b F r ic t io n L e t u s c o n s i d e r th e c a s e R ( x , X , x) = ÌĨQ s i g n * , 3.1 ) vh ere h0 is a p o s i t i v e c o n s t a n t , •+1 ) sig n * = if À '> 0, —1 if X < 0, if X = In th is c a s e i t is e a s y t o v e r if y t h a t 71 ——-——sin(2;?7+ 1) 09 m —0 2m + t h e f o r m u l a e ( ) a r e o f t h e f o r m : Po = P i = 4s = , q = ỆA a + ~ Pl = 3, k a z, - A Q a - Ặ h Q 3a 3, g = - L k a 3, P in, - i # l , r\ 0, p3 = ~ _ p 2m+1 - h ũ 3a 4/7 o ' ^ i + + ^ T r ’ m ^ o T h e r e f o r e , th e e x p r e s s i o n s ( ) a r e : H o = G0 = , - " = W 2m+1 2m+1 - T fS W T W ) ( t f ‘ + 9Q 2) I - - ^ ^ + ■ § - (3fr + n Q m ( m + l ) [ f + ( m + l ) 2i 2] ’ ^ 2m T Í3 2w ( w + l ) ( m + ) [ £ + ( m + ) 2Í 2] ’ - ^ - f « > c o s V + i Ca s m , , | , n3 - £ ca co s2 y - ĩc a sin y I , ’ ^ 2m Nguyen Van Dao T h e In flu en ce o f T u rb u le n t F ric tio n on P a m e tric O s c illa tio n N o w , w e turn to th e s tu d y o n th e c a s e o f th e t u r b u le n t f r ic t io n , w h e n R ( x , X , x) h a s fo r m : R ( x , x , x ) = /?2 x 2s i g n x , 1) lere h2 is a p o s it iv e c o n s t a n t It is e a s y t o s e e th a t: I (/ỉo S Ìn ọ ? ) = — 2) ■ < R c os c p) 2,71 = ? _2 h2y a , 0, d th e r e fo r e E q s (1 ) ta k e th e f o r m : fo r a =£ 0: da dt (Ệ Q2h —k ) a + ~ a c o s t p + - ^ - £ s i n y > + ^ - h Q a , 4 Í2 371j Ệ2 + Q dtp w = £ dt a( Ệ2 + Q 2) ^ ( f - £ ? 2) z l a - (£Ả ' + í / ữ + - ^ - s i n y> 2Q 4Í2 Ệ c o s w + - ^ - A i 2a 2| B y c o m p a r i n g w ith E q ( 1 ) , w e h a v e : * , - ti hi Q a z .4) R = -Z — h Q za 07Z C o n s e q u e n t l y , th e e x p r e s s io n ( 2 ) is: \ 5) W(a0 , y ) = U A + ~ k a l \ + q a UỈ + ± h Q 2a 2o + ^ f - h 2a0 F ig 263 Nonlinear oscillations o f the third order systems Part III T h e eq u ation V2 w — y ie ld s : (Ệ + Q 2) ^ k * + Q *h * ) a ° + 37i(Ệ2 + Q 2) h * ũ o ± 1+ v , i 2+ ữ 2 ± Ệ2 + Q ^ì // A c , } h*2 = J m Ỉ* Q2 ’ V ' - ỆQ2h2 a Q(ỆQ2h!t.—k^)a0 + j7 l y 2Q ' T h i s r e la tio n is p lo t t e d in F i g f o r t h e c a s e Ệ = Q = 1, A* = 0 , fc* = —0 , = 0 a n d / * = 0.01 (c u r v e ), / * = (cu r v e 2) H e r e th e c h a n g e o f th e c o e ffic ie n t le a d s n o t o n l y t o th e c h a n g e in t h e m a x i m u m o f t h e a m p lit u d e s o f o s c illa t io n but t o th e c h a n g e in r ig id ity o f t h e s y s t e m c o n s id e r e d T h e in c r e a s e in h2 le a d s t o a d e ase in th e m a x i m u m o f t h e a m p l i t u d e s a n d th e s y s t e m b e c o m e s h ard er T h e In flu en ce o f C o m b in a tio n F ric tio n on th& P a m e tric O sc illa tio n In th is S e c t io n w e s t u d y t h e in f l u e n c e o n th e p a r a m e tr ic o s c i l l a t i o n o f th e c o m b i n a n fr ic tio n : R ( x , X, x) = (h0 + h x 2) s i g n x 1) N o w , E q s ( 1 ) are o f t h e f o r m : fo r ữ / 0: da ~dt = dy dt e ~ Ệ 2+ Í 2 | i ( f f l ^ - f c ) a > + ^ - c o s 2v + ^ f s i n 2v > + ^ ( *0 + j A ca E 4Í2 a(Ệ2 + Q 2) w ) £ c o s 2y + I + —- h + ~ h Q 2a 71 Nguyen Van Dao Th: e x p r e s s io n (1 2 ) is: w — ịặA + ị k a ị J + Ì Q / i + ị / i Q 3a 20 + ^ - h + ^ - h Q 2a0\ -.3) Th: e q u a tio n th a t y ie ld s th e r e la t io n s h ip b e t w e e n th e a m p l i t u d e o f o s c illa t io n a n d t h e Lcitirg fr e q u e n c y w ill b e : r ) = 1+ AQ ht (Ệ + Q 2) 371 Ệ2 + Q ± v h p ' \ / ^ 2+ Q ) c l - 7i(Ệ2 + Q 2) a + (Ệ Q 2h * - k * ) a 20 + ~ Ệ Q 2/ĩ* a + - ^ - h * n 7ian In this c a s e th e r e s p o n s e c u r v e is c lo s e d t o o (se e F ig 5) fo r Ệ = Q = , /7 * = 0 , * = - , c* = 0 , h i = 5* " 3, h*2 = 0 R eferences z )SIKSKI, Vibrations o f an one-degree o f freedom system with non-linear internal friction and relaxa­ tion P ro ce ed in g s o f In te rn a tio n a l C o n fe re n c e o n N o n -lin e a r O s c illa tio n s, I I I , K ie v 1963 z )SINSKI, G B o y a d jie v , The vibrations o f the system with non-linear friction and relaxation with slo\ly variable coefficients, P ro c 4th C o n fe re n c e o n N o n - L in e a r O s c illa tio n s, P g u e 196 H V S r i r a n g a r a j a n , p S r in iv a s a n , Application o f ultraspherical polynomials to forced oscillations o f third order non-linear system, J S o u n d V ib r , , 4, 1974 L H V S r i r a n g a r a j a n , p S r in iv a s a n , Ultraspherical polynomials approach to the study o f third-order nonlinear systems , J S o u n d V ib r , 40, 2, 19 75 > A ONDL, Notes on the solution o f forced oscillations o f a third-order non-linear system, J S o u n d V ib r , ,2 , 1974 j A T o n d l , A d d itio n a l n o te o n a K z ♦ s in s k i, th ird -o r d e r s y s t e m , J S o u n d Vibr., 47, 1, 1976 N g u y e n v a n D a o , Parametric oscillation o f an uniform beam in a Theological model,P ro c 2nc N a tio n a l C o n fe re n c e o n M e c h a n ic s , H a n o i 19 77 } N 'í B o g o liu b o v , Y u a M it r o p o ls k y , Asymptotic methods in the theory o f non-linear oscillations, M o c o w 1963 K Nguyen van r* Dao, F u n d a m e n ta l m e th o d s ) H C a n d e r e r , N i c h t l i n e a r e M e c h a n ik , o f n o n -lin e a r Berlin o s c illa tio n s , H a n o i 1969 1958; N g 'Y E n v a n D a o , Non-linear oscillations o f the third order systems Part / Autonomous systems, J re ch n P h y s , 0, 4, 1979 N g ' Y E n v a n D a o , N o n - l in e a r o s c illa tio n s o f th e t h i r d o r d e r s y s te m s P a r t I I N o n - a u t o n o m o u s s y s te m s , J re ch n P h y s , , 1, 1980 S tre szcze n ie N IE L N IO W E D R G A N IA U K L A D W T R Z E C IE G O R Z Ẹ D U C Z Ẹ ắ C I I I P A R A M E T R Y C Z N E D R G A N IA N iie js z a p r a c '1 sta n o w i czẹ sc I I I p c [11] i [12] R o z p a t rz o n o w n ie j p a m e try czn e d rg a n ia n ie lin io *go u ia d u trzeciego rzẹ d u W ^ n a c z o n o p rz y b liz o n e ro z w iạ z a n ie ró vvn a n ia ru c h u o z p o d a n o w a ru n k i stateczno sci s ta c jo n a rĩgo rc w i^ z a n ia Z b d a n o w p ly w ta rc ia k u lo m b o w s k ie g o i tu rb u le n tn e g o n a d rg a n ia p ara m etry czn e R o z p a t rz o n o kze d g a n ia w p rz y p a d k u k o m b in a c y jn e g o ta rcia N o n lin e a r o sc illa tio n s o f th e th ir d o rd er systems Part 111 265 p e K) M e HEJIH H EH HLIE KOJIEEAHHil CH C TEM T P E T L E rO nO PflJIK A ^ ỈA C T L I I I IIA P A M E T P M ^ E C K J iE K O J IE B A H H H HacTOHiuan paooT a c o cra B jifleT TpeTLK) ^lâCTL p aốoT [1 ] H [ ] PaccMOTpeHbi B H e ổ n a p a M eT p ii' He K O Jie6aH H H H ejniH eH H O H CHCTeMbi T p e T b e r o n o p H A K a O npeA ejieH O n p H ố jm > K e H H e p e m e H n e y p aB H eH H H H n p u B e A C H b i VCJIOBHH y c T O H H H B o c m noH apH oro pem eHHH I i c c ji e f lo B a H o BjiH H H H e K y jio H O B C K o ro H T y p G y jie H T H o ro TpeHHH H a n a p a M e T p m e c K H e K O Jie6aH H H P a c c M O T p e H b i TOH

Ngày đăng: 18/03/2021, 19:22

TỪ KHÓA LIÊN QUAN

w