1. Trang chủ
  2. » Sinh học

ÔN THI TN 2010 - 02

1 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 181,97 KB

Nội dung

Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục của hình trụ.. Tính cạnh của hình vuông đó.[r]

(1)

http://dinhhuy1980.violet.vn/

dinhhuy1980@gmail.com ĐỀ

I PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( điểm ) Câu I ( 3,0 điểm ) Cho hàm số

1  

x

x

y có đồ thị (C) a.Khảo sát biến thiên vẽ đồ thị (C)

b.Viết phương trình tiếp tuyến với đồ thị (C) qua điểm M(1;8) Câu II ( 3,0 điểm )

a Giải bất phương trình

2 logsin 2

4

3

 

x x

b Tính tích phân : I =

1

0

(3 cos )

x x dx

c.Giải phương trình 4 7 0

  

x x tập số phức

Câu III ( 1,0 điểm )

Một hình trụ có bán kính đáy R = , chiều cao h = Một hình vng có đỉnh nằm hai đường trịn đáy cho có cạnh khơng song song khơng vng góc với trục hình trụ Tính cạnh hình vng

II PHẦN RIÊNG ( điểm ) 1.Theo chương trình chuẩn :

Câu IV.a ( 2,0 điểm ) :

Trong không gian với hệ tọa độ Oxyz , cho điểm M(1;0;5) hai mặt phẳng (P) :2xy3z 1 (Q) : xy  z

a Tính khoảng cách từ M đến mặt phẳng (Q)

b Viết phương trình mặt phẳng ( R ) qua giao tuyến (d) (P) (Q) đồng thời vng góc với mặt phẳng (T) : 3xy 1

Câu V.a ( 1,0 điểm ) :

Cho hình phẳng (H) giới hạn đường y = 2

xx trục hồnh Tính thể

tích khối trịn xoay tạo thành quay hình (H) quanh trục hồnh 2.Theo chương trình nâng cao :

Câu IV.b ( 2,0 điểm ) :

Trong không gian với hệ tọa độ Oxyz , cho đường thẳng (d ) : 3

2 1

  

 

x y z

mặt phẳng (P) : x2y  z

a Tìm tọa độ giao điểm đường thẳng (d) mặt phẳng (P) b Tính góc đường thẳng (d) mặt phẳng (P)

c Viết phương trình đường thẳng () hình chiếu đường thẳng (d) lên mặt phẳng (P)

Câu V.b ( 1,0 điểm ) :

Giải hệ phương trình sau : 2

4 log

log

 

 

 

 

 

y

y

Ngày đăng: 10/03/2021, 22:33

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w