1. Trang chủ
  2. » Ôn thi đại học

advanced engineering mathematics – mathematics

24 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 24
Dung lượng 67,95 KB

Nội dung

Autocovariance generating function and spectral density.... Introduction to Time Series Analysis.[r]

(1)

Introduction to Time Series Analysis Lecture 16.

1 Review: Spectral density Examples

3 Spectral distribution function

(2)

Review: Spectral density

If a time series {Xt} has autocovariance γ satisfying

P∞

h=−∞ |γ(h)| < ∞, then we define its spectral density as

f(ν) =

∞ X

h=−∞

γ(h)e−2πiνh

(3)

Review: Spectral density

1 f(ν) is real f(ν) ≥

3 f is periodic, with period So we restrict the domain of f to

−1/2 ≤ ν ≤ 1/2

4 f is even (that is, f(ν) = f(−ν)) γ(h) =

Z 1/2 −1/2

(4)

Examples

White noise: {Wt}, γ(0) = σw2 and γ(h) = for h 6=

f(ν) = γ(0) = σw2

AR(1): Xt = φ1Xt−1 + Wt, γ(h) = σw2 φ|h|1 /(1 − φ21)

f(ν) = σw2

1−2φ1cos(2πν)+φ2

If φ1 > (positive autocorrelation), spectrum is dominated by low frequency components—smooth in the time domain

If φ1 < (negative autocorrelation), spectrum is dominated by high

(5)

Example: AR(1)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10 20 30 40 50 60 70 80 90 100

ν

f(

ν

)

Spectral density of AR(1): X

(6)

Example: AR(1)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10 20 30 40 50 60 70 80 90 100

ν

f(

ν

)

Spectral density of AR(1): X

(7)

Example: MA(1)

Xt = Wt + θ1Wt−1

γ(h) =

   

  

σw2 (1 + θ12) if h = 0,

σw2 θ1 if |h| = 1,

0 otherwise

f(ν) =

1

X

h=−1

γ(h)e−2πiνh

= γ(0) + 2γ(1) cos(2πν)

(8)

Example: MA(1)

Xt = Wt + θ1Wt−1

f(ν) = σw2 + θ12 + 2θ1 cos(2πν)

If θ1 > (positive autocorrelation), spectrum is dominated by low frequency components—smooth in the time domain

If θ1 < (negative autocorrelation), spectrum is dominated by high

(9)

Example: MA(1)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.5 1.5 2.5 3.5

ν

f(

ν

)

Spectral density of MA(1): X

(10)

Example: MA(1)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.5 1.5 2.5 3.5

ν

f(

ν

)

Spectral density of MA(1): X

(11)

Introduction to Time Series Analysis Lecture 16.

1 Review: Spectral density Examples

3 Spectral distribution function

(12)

Recall: A periodic time series

Xt =

k X

j=1

(Aj sin(2πνjt) + Bj cos(2πνjt))

=

k X

j=1

(A2j + Bj2)1/2 sin(2πνjt + tan−1(Bj/Aj))

E[Xt] =

γ(h) =

k X

j=1

σj2 cos(2πνjh)

X

h

(13)

Discrete spectral distribution function

For Xt = Asin(2πλt) + B cos(2πλt), we have γ(h) = σ2 cos(2πλh), and we can write

γ(h) =

Z 1/2 −1/2

e2πiνhdF(ν),

where F is the discrete distribution

F(ν) =

   

  

0 if ν < −λ,

σ2

2 if −λ ≤ ν < λ,

(14)

The spectral distribution function

For any stationary {Xt} with autocovariance γ, we can write

γ(h) =

Z 1/2 −1/2

e2πiνhdF(ν),

where F is the spectral distribution function of {Xt}

We can split F into three components: discrete, continuous, and singular If γ is absolutely summable, F is continuous: dF(ν) = f(ν)dν

(15)

The spectral distribution function

For Xt = Pkj=1 (Aj sin(2πνjt) + Bj cos(2πνjt)), the spectral distribution function is F(ν) = Pkj=1 σj2Fj(ν), where

Fj(ν) =

   

  

0 if ν < −νj,

1

2 if −νj ≤ ν < νj,

(16)

Wold’s decomposition

Notice that Xt = Pkj=1 (Aj sin(2πνjt) + Bj cos(2πνjt)) is deterministic

(once we’ve seen the past, we can predict the future without error) Wold showed that every stationary process can be represented as

Xt = Xt(d) + Xt(n),

(17)

Introduction to Time Series Analysis Lecture 16.

1 Review: Spectral density Examples

3 Spectral distribution function

(18)

Autocovariance generating function and spectral density

Suppose Xt is a linear process, so it can be written

Xt = P∞i=0 ψiWt−i = ψ(B)Wt

Consider the autocovariance sequence,

γh = Cov(Xt, Xt+h)

= E   ∞ X i=0

ψiWt−i

∞ X

j=0

ψjWt+h−j

= σw2

∞ X

i=0

(19)

Autocovariance generating function and spectral density

Define the autocovariance generating function as

γ(B) =

∞ X

h=−∞

γhBh

Then, γ(B) = σw2

∞ X

h=−∞ ∞ X

i=0

ψiψi+hBh

= σw2

∞ X i=0 ∞ X j=0

ψiψjBj−i

= σw2

∞ X

i=0

ψiB−i

∞ X

j=0

(20)

Autocovariance generating function and spectral density

Notice that

γ(B) =

∞ X

h=−∞

γhBh

f(ν) =

∞ X

h=−∞

γhe−2πiνh

= γ e−2πiν

= σw2 ψ e−2πiν ψ e2πiν

= σw2 ψ e2πiν

2

(21)

Autocovariance generating function and spectral density

For example, for an MA(q), we have ψ(B) = θ(B), so

f(ν) = σw2 θ e−2πiνθ e2πiν

= σw2 θ e−2πiν

2

For MA(1),

f(ν) = σw2 + θ1e−2πiν

2

(22)

Autocovariance generating function and spectral density

For an AR(p), we have ψ(B) = 1/φ(B), so

f(ν) = σ

2

w

φ (e−2πiν)φ (e2πiν)

= σ

2

w

|φ (e−2πiν)|2

For AR(1),

f(ν) = σ

2

w

|1 − φ1e−2πiν|2

= σ

2

w

(23)

Spectral density of a linear process

If Xt is a linear process, it can be written Xt = P∞i=0 ψiWt−i = ψ(B)Wt Then

f(ν) = σw2 ψ e−2πiν

2

(24)

Introduction to Time Series Analysis Lecture 16.

1 Review: Spectral density Examples

3 Spectral distribution function

Ngày đăng: 09/03/2021, 08:07