Gọi N là giao điểm của HE và AB.[r]
(1)Tuần 4 Tiết + 2
LUYỆN TẬP (HÌNH HỌC) I.Lý thuyết
Các trường hợp bằng của tam giác
{
AB=DE AC=DF BC=EF
(c.c.c)
{
AB=DE ^ A = D^ AC=DF
(c.g.c)
{
^
A = D^ AB=DE
^
B = E^
(g.c.g)
II Bài tập
(2)a/ Chứng minh: ABH = ACH Suy ra: H trung điểm BC
b/ Lấy điểm D thuộc AB, E thuộc AC cho BD = CE Chứng minh: HDE cân
c/ Chứng minh: DE // BC
d/ Gọi M giao điểm của DH AC Gọi N giao điểm của HE AB Chứng minh: AMN cân
Bài 2: Cho ABC cân A Tia phân giác của góc BAC cắt BC D
a/ Chứng minh: ADB = ADC D trung điểm của BC (Bằng hai cách)
b/ Chứng minh: AD vng góc với BC
c/ Kẻ DK vng góc với AB K DE vng góc với AC E Chứng minh:
DKE cân
d/ Chứng minh: KE // BC
Bài 3: Cho ABC cân A Vẽ AD vng góc với BC D
a/ Chứng minh: DAB = DAC
b/ Vẽ DM vng góc với AB M DN vng góc với AC N Chứng minh:
DMN cân
c/ Gọi E giao điểm của MD AC, F giao điểm của AB ND Chứng minh:
ADF = ADE
d/ Chứng minh: BC // EF
Gợi ý:
1) chứng minh tam giác cân có cách:
Cách 1: Chứng minh tam giác có cạnh bằng Cách 2: Chứng minh tam giác có góc bằng
2) Trong tam giác cân thì cạnh bằng góc ở đáy bằng ( tính chất của tam giác cân)
(3)