Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 892 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
892
Dung lượng
12,25 MB
Nội dung
Introduction to Food Engineering Fifth Edition Food Science and Technology International Series Series Editor Steve L Taylor University of Nebraska À Lincoln, USA Advisory Board Ken Buckle The University of New South Wales, Australia Mary Ellen Camire University of Maine, USA Roger Clemens University of Southern California, USA Hildegarde Heymann University of California À Davis, USA Robert Hutkins University of Nebraska À Lincoln, USA Ron S Jackson Quebec, Canada Huub Lelieveld Bilthoven, The Netherlands Daryl B Lund University of Wisconsin, USA Connie Weaver Purdue University, USA Ron Wrolstad Oregon State University, USA A complete list of books in this series appears at the end of this volume Introduction to Food Engineering Fifth Edition R Paul Singh Department of Biological and Agricultural Engineering and Department of Food Science and Technology University of California Davis, California Dennis R Heldman Department of Food Science and Technology Department of Food, Agricultural and Biological Engineering The Ohio State University Columbus, Ohio AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 32 Jamestown Road, London, NW1 7BY 225 Wyman Street, Waltham, MA 02451, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA Fifth Edition 2014 Copyright r 2014, 2009, 2001, 1993, 1984 Elsevier Inc All rights reserved No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone: (144) 1865 843830, fax: (144) 1865 853333, E-mail: permissions@elsevier.com alternatively, visit the science and technology books website at http://www.elsevierdirect.com/rights for further information Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein because of rapid advances in the medical sciences in particular, independent verification of diagnoses and drug dosages should be made Library of Congress Cataloging-in-Publication Data A catalogue record for this book is available from the British Library British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library ISBN: 978-0-12-398530-9 For information on all Academic Press publications visit our Web site at www.elsevierdirect.com Printed in USA 09 10 Contents About the Authors xvii Foreword xix Preface xxi CHAPTER Introduction .1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 Dimensions Engineering Units 1.2.1 Base Units 1.2.2 Derived Units 1.2.3 Supplementary Units System 10 State of a System 11 1.4.1 Extensive Properties 12 1.4.2 Intensive Properties 13 Density 13 Concentration 15 Moisture Content 17 Temperature 20 Pressure 22 Enthalpy 26 Equation of State and Perfect Gas Law 26 Phase Diagram of Water 27 Conservation of Mass 29 1.13.1 Conservation of Mass for an Open System 30 1.13.2 Conservation of Mass for a Closed System 32 Material Balances 32 Thermodynamics 41 Laws of Thermodynamics 42 1.16.1 First Law of Thermodynamics 42 1.16.2 Second Law of Thermodynamics 42 Energy 43 Energy Balance 45 v vi Contents 1.19 Energy Balance for a Closed System 45 1.19.1 Heat 45 1.19.2 Work 46 1.20 Energy Balance for an Open System 55 1.20.1 Energy Balance for Steady Flow Systems 56 1.21 A Total Energy Balance 56 1.22 Power 59 1.23 Area 59 Problems 60 List of Symbols 63 Bibliography 64 CHAPTER Fluid Flow in Food Processing 65 2.1 Liquid Transport Systems 66 2.1.1 Pipes for Processing Plants 66 2.1.2 Types of Pumps 68 2.2 Properties of Liquids 72 2.2.1 Terminology Used in Material Response to Stress 72 2.2.2 Density 73 2.2.3 Viscosity 73 2.3 Handling Systems for Newtonian Liquids 81 2.3.1 The Continuity Equation 82 2.3.2 Reynolds Number 84 2.3.3 Entrance Region and Fully Developed Flow 88 2.3.4 Velocity Profile in a Liquid Flowing Under Fully Developed Flow Conditions 90 2.3.5 Forces Due to Friction 96 2.4 Force Balance on a Fluid Element Flowing in a Pipe—Derivation of Bernoulli Equation 100 2.5 Energy Equation for Steady Flow of Fluids 107 2.5.1 Pressure Energy 111 2.5.2 Kinetic Energy 111 2.5.3 Potential Energy 113 2.5.4 Frictional Energy Loss .113 2.5.5 Power Requirements of a Pump .116 2.6 Pump Selection and Performance Evaluation 120 2.6.1 Centrifugal Pumps 120 2.6.2 Head 122 2.6.3 Pump Performance Characteristics 122 2.6.4 Pump Characteristic Diagram 126 2.6.5 Net Positive Suction Head .127 Contents 2.6.6 Selecting a Pump for a Liquid Transport System 131 2.6.7 Affinity Laws 136 2.7 Flow Measurement 137 2.7.1 The Pitot Tube 141 2.7.2 The Orifice Meter 143 2.7.3 The Venturi Meter .147 2.7.4 Variable-Area Meters 147 2.7.5 Other Measurement Methods 148 2.8 Measurement of Viscosity .149 2.8.1 Capillary Tube Viscometer .149 2.8.2 Rotational Viscometer 151 2.8.3 Influence of Temperature on Viscosity 154 2.9 Flow Characteristics of Non-Newtonian Fluids 156 2.9.1 Properties of Non-Newtonian Fluids 156 2.9.2 Velocity Profile of a Power Law Fluid 163 2.9.3 Volumetric Flow Rate of a Power Law Fluid 163 2.9.4 Average Velocity in a Power Law Fluid 164 2.9.5 Friction Factor and Generalized Reynolds Number for Power Law Fluids 164 2.9.6 Computation of Pumping Requirement of Non-Newtonian Liquids 167 2.10 Transport of Solid Foods 170 2.10.1 Properties of Granular Materials and Powders .171 2.10.2 Flow of Granular Foods 176 2.11 Process Controls in Food Processing 179 2.11.1 Processing Variables and Performance Indicators .181 2.11.2 Input and Output Signals to Control Processes 183 2.11.3 Design of a Control System 183 2.12 Sensors 191 2.12.1 Temperature .191 2.12.2 Liquid Level in a Tank 193 2.12.3 Pressure Sensors 194 2.12.4 Flow Sensors 195 2.12.5 Glossary of Terms Important in Data Acquisition 196 2.13 Dynamic Response Characteristics of Sensors 196 Problems 200 List of Symbols 205 Bibliography 207 CHAPTER Resource Sustainability 211 3.1 Generation of Steam 211 3.1.1 Steam Generation Systems .212 vii viii Contents 3.1.2 Thermodynamics of Phase Change .215 3.1.3 Steam Tables 218 3.1.4 Steam Utilization 224 3.2 Fuel Utilization 228 3.2.1 Systems .230 3.2.2 Mass and Energy Balance Analysis 231 3.2.3 Burner Efficiencies 233 3.3 Electric Power Utilization .234 3.3.1 Electrical Terms and Units .236 3.3.2 Ohm’s Law 237 3.3.3 Electric Circuits 238 3.3.4 Electric Motors 240 3.3.5 Electrical Controls .241 3.3.6 Electric Lighting 242 3.4 Energy, Water and Environment 244 3.4.1 Life Cycle Assessment .245 3.4.2 Food System Applications 249 3.4.3 Sustainability Indicators 257 Problems 257 List of Symbols 261 Bibliography 262 CHAPTER Heat Transfer in Food Processing .265 4.1 Systems for Heating and Cooling Food Products 266 4.1.1 Plate Heat Exchanger 266 4.1.2 Tubular Heat Exchanger 270 4.1.3 Scraped-Surface Heat Exchanger 271 4.1.4 Steam-Infusion Heat Exchanger 273 4.1.5 Epilogue .274 4.2 Thermal Properties of Foods 275 4.2.1 Specific Heat 275 4.2.2 Thermal Conductivity .278 4.2.3 Thermal Diffusivity 280 4.3 Modes of Heat Transfer .282 4.3.1 Conductive Heat Transfer .282 4.3.2 Convective Heat Transfer 285 4.3.3 Radiation Heat Transfer 287 4.4 Steady-State Heat Transfer 288 4.4.1 Conductive Heat Transfer in a Rectangular Slab 289 4.4.2 Conductive Heat Transfer through a Tubular Pipe .292 4.4.3 Heat Conduction in Multilayered Systems 295 Contents 4.4.4 4.4.5 4.4.6 4.4.7 4.4.8 Estimation of Convective Heat-Transfer Coefficient 303 Estimation of Overall Heat-Transfer Coefficient 320 Fouling of Heat Transfer Surfaces 324 Design of a Tubular Heat Exchanger 330 The Effectiveness-NTU Method for Designing Heat Exchangers 338 4.4.9 Design of a Plate Heat Exchanger 343 4.4.10 Importance of Surface Characteristics in Radiative Heat Transfer .350 4.4.11 Radiative Heat Transfer between Two Objects 352 4.5 Unsteady-State Heat Transfer .355 4.5.1 Importance of External versus Internal Resistance to Heat Transfer .357 4.5.2 Negligible Internal Resistance to Heat Transfer (NBi , 0.1)—A Lumped System Analysis .358 4.5.3 Finite Internal and Surface Resistance to Heat Transfer (0.1 # NBi # 40) .363 4.5.4 Negligible Surface Resistance to Heat Transfer (NBi $ 40) 366 4.5.5 Finite Objects 366 4.5.6 Procedures to Use TemperatureÀTime Charts .368 4.5.7 Use of fh and j Factors in Predicting Temperature in Transient Heat Transfer 376 4.6 Electrical Conductivity of Foods 384 4.7 Ohmic Heating .387 4.8 Microwave Heating 389 4.8.1 Mechanisms of Microwave Heating 390 4.8.2 Dielectric Properties 391 4.8.3 Conversion of Microwave Energy into Heat 392 4.8.4 Penetration Depth of Microwaves 393 4.8.5 Microwave Oven .395 4.8.6 Microwave Heating of Foods 396 Problems 398 List of Symbols 414 Bibliography 417 CHAPTER Preservation Processes .421 5.1 Processing Systems .421 5.1.1 Pasteurization and Blanching Systems 422 5.1.2 Commercial Sterilization Systems 424 5.1.3 Ultra-High Pressure Systems 428 ix Index E Elastic solid, 72 Electric power utilization, 234À244 circuits, 238À240, 238f, 239f controls, 241À242 energy use by industry, 229t lighting, 242À244 motor, 240À241 Ohm’s law, 237À238 symbols, 261À262 terms and units, 236À237 tomato processing, 235f Electrical conductivity, foods, 384À386, 384f, 385t Electricity, 236 Electrodialysis, 647À651, 648f, 650t Emissivity, values for surfaces, 812t Energy, 43À44 Energy, water and environment, 244À257 food system applications, 249À256 life cycle assessment (LCA), 245À249 Energy balance, 45 closed system heat transfer, 45À46 work energy balance calculations, 51À55 frictional forces, 51 gravitational forces, 49 moving boundary-associated work, 47À49, 47f, 48f shaft rotation, 50À51, 50f units, 46À55 velocity change, 49À50 combustion analysis, 231À233 expression, 45 open system, 55À56 steady flow system, 56 total energy balance, 56À59 Energy use See Electric power utilization; Fuel utilization Engineering units See Units Enthalpy air, 594À595 frozen foods, 531À532, 532f, 806t principles, 26, 53b water vapor, 596 Entrance region, 88À90 Equation of state, 26À27 Error signal, 196 Euler equation of motion, 103 Evaporation, 565 boiling point elevation, 567À569, 568f symbols, 591 vapor recompression mechanical vapor recompression system, 588, 588f thermal recompression system, 587, 587f Evaporator agitated thin-film evaporator, 573À576, 574f, 575t batch-type pan evaporator, 569À570, 569f falling-film evaporator, 571, 572f forced-circulation evaporator, 573, 573f natural circulation evaporator, 570, 570f refrigeration, 481À483, 482f, 501 rising/falling-film evaporator, 571À573, 572f rising-film evaporator, 570, 571f single-effect evaporator design, 576À580, 576f overview, 566f triple-effect evaporator design, 581À586, 581f overview, 566f types and properties, 575t Expansion valve, refrigeration, 488À490, 488f, 489f, 490f Extrusion, 743 applications, 744 flow rates, 748, 748b power law models for extrudates, 746t principles, 744À751 symbols, 764 systems cold extrusion, 752, 752f components, 743À744 cooking process, 753À754 design, 757À762, 758f single screw extruder, 754À756, 755f twin screw extruder, 756À757, 757f F Fail-closed valve, 187 Falling-film evaporator, 571, 572f 853 Fanning friction factor, 97À99, 98f, 203À204 Farad, Fat coefficients to estimate food properties, 808t composition of selected foods, 807t Feed backward control system, 184À185, 184f, 185f Feedback control, 185 Feedforward control system, 185À186, 186f fh factor, temperature prediction in transient heat transfer, 376À383, 378f, 379f, 380f, 382f Fiber, coefficients to estimate food properties, 808t Fick’s law, 618À619, 771 Filtration mechanisms, 717À718 operating equations constant-pressure filtration, 715À717 constant-rate filtration, 713À715 rate, 712 resistance, 712 system design, 718À720, 720f Final control element, 189À191 Fire-tube steam generator, 212, 213f First law of thermodynamics, 42 First-order reaction, shelf life, 782À787, 783f Flash gas removal system, refrigeration, 512À516, 513f, 514f Flashing, 488À489, 512 Flow diversion valve (FDV), 422À423 Flow measurement miscellaneous techniques, 148À149 orifice meter, 143À146, 144f overview, 137À149 Pitot tube, 141À143, 141f, 142f variable-area meter, 147À148, 147f venturi meter, 147, 147f Flow rate, refrigerant, 502À512 Flow sensors, 195À196 Flow work, 55 Flue gas, energy loss, 232f, 233b Fluid flow, 65 Fluid friction, 110À111 Fluid power, 125 Fluidized-bed dryer, 685, 685f Food dehydration See Dehydration 854 Index Food freezing See Freezing Force, units, 9b Force balance, fluid in pipe, 100À107, 101f Forced-circulation evaporator, 573, 573f Formula Method, 460À467, 462f Forward feed system, 566À567 Fouling, heat transfer surfaces, 268 Fouling, heat transfer surfaces, 324À330, 325t, 326f, 328f, 329f Fourier’s law for heat conduction, 283À284 Freeze-drying system, 686, 686f Freezing, 521 freezing time experimental measurement, 548 factors affecting, 548À549 finite objects, 544À547, 544f, 545t freezing rate, 549 overview, 534À551 Pham equation for determination, 540À544, 541f Planck’s equation in determination, 536À540, 536f thawing time, 549À551 frozen food properties apparent specific heat, 533, 533f apparent thermal diffusivity, 533, 534f density, 530À531, 531f enthalpy, 531À532, 532f thermal conductivity, 531, 532f preservation mechanisms, 521 quality changes in foods, 552À555, 553t, 555f, 556t symbols, 560À561 systems direct contact systems air-blast freezers, 528, 529f immersion freezing system, 529À530, 529f, 530f principles, 528f indirect contact systems air-blast freezers, 525À526, 525f liquid food freezers, 526À527, 527f plate freezers, 522À524, 523f, 524f Freezing temperature, refrigerant, 477 Freon, 478À479, 478t Friction factor, 96À97, 98f, 164À166 Friction energy loss major losses, 113 minor losses, 113 pipe fittings, 114À116, 115t sudden contraction, 113À114 sudden expansion, 114 fluid flow, 96À100 pressure loss calculation, 99b Froude number, 738 Frozen food See Freezing Fuel utilization burner efficiency, 233À234 energy use by industry, 229t mass and energy balance analysis, 231À233 symbols, 261À262 systems, 230À231, 230f Fully developed flow, 88À89 G GAB model See GuggenheimÀ AndersonÀDeBoer (GAB) model Gas constant universal gas constant, 620 water vapor, 595 Gauge pressure, 23 General Method for Process Calculation aseptic processing and packaging, 450À458, 452f, 453f, 453t overview, 442À458, 443f pasteurization, 444À447, 444f, 445f sterilization, 447À450, 448f, 449f GibbsÀDalton law, 596 Grashof number, 315 Gravitational force, sedimentation, 721À722 GuggenheimÀAndersonÀDeBoer (GAB) model, 676À677 H Head fluids, 24, 24f, 122 pump head, 125, 133f, 136f system head curves, 131À133, 132f Heat capacity rate ratio, 338À339 Heat content, 52 Heat evolution rates, fresh fruits and vegetables, 804t Heat exchanger, 266 classification, 266f design effectiveness and number of transfer units approach heat capacity rate ratio, 338À339 heat exchanger effectiveness, 339 number of transfer units, 340À343, 340t, 341t, 342f plate heat exchanger, 343À350 tubular heat exchanger, 330À338, 331f, 336f fouling of heat transfer surfaces, 324À330, 325t, 326f, 328f, 329f plate heat exchanger, 266À270, 267f, 268f, 269f scraped-surface heat exchanger, 271À273, 272f steam-infusion heat exchanger, 273À274, 273f tube dimensions and pump power requirement calculations, 117À118, 117t tubular heat exchanger, 270À271, 270f, 271f, 272f Heat transfer, 265 conductive heat transfer, 282À285, 283f, 284f convective heat transfer, 282À286, 283f, 284f dehydration, 680 fouling of heat transfer surfaces, 324À330, 325t, 326f, 328f, 329f overview, 45, 282 radiation heat transfer between two objects, 306f, 352À355, 354f, 355f overview, 287À288 surface characteristics importance, 350À352, 350f steady-state heat transfer conductive heat transfer in pipe, 292À295, 293f, 296f conductive heat transfer in rectangular slab, 289À292 convective heat transfer Index coefficient estimation, 303À319, 303f, 304f, 306f, 311f forced convection, 308À315, 308f, 310f free convection, 315À319, 315f, 316t, 318f thermal resistance, 319 multilayered systems composite cylindrical tube in series, 298À302, 299f, 302f, 395f composite rectangular wall in series, 295À298, 296f overall heat transfer coefficient estimation, 320À324, 320f, 322f principles, 288À355, 288f thermal resistance, 290À292, 292f symbols, 414À417 unsteady-state heat transfer external versus internal resistance to heat transfer, 357À358, 358f finite internal and surface resistance to heat transfer, 295, 363À366, 365f, 366f finite objects, 366À368, 367f lumped system analysis of negligible internal resistance to heat transfer, 358À363 negligible surface resistance to heat transfer, 366 overview, 355À383, 357f temperature prediction with fh and j factors, 376À383, 378f, 379f, 380f, 382f temperatureÀtime charts, 368À376, 374f, 375f, 376f Henry, Henry’s law, 771À772 HerschelÀBulkley fluid, 160 HerschelÀBulkley model, 160, 161t High-pressure float valve, 489À490, 489f High-quality life (HQL), frozen foods, 552À554 High-temperature-short-time (HTST) pasteurization system, 422À423 Hollow-fiber membrane system, 670f, 671 HQL See High-quality life (HQL) Humid heat, 598 Humidity ratio, 597À598 Hysteresis, 196 855 I L Ice See also Freezing coefficients to estimate food properties, 808t properties as function of temperature, 804t Ice box, 475, 475f Ideal gas law, 619 Illumination, 243 Immersion freezing system, 529À530, 529f, 530f Impact pressure, 25 Impeller geometric ratios, 734t marine-type propeller impeller, 734À735, 734f paddle impeller, 735, 735f power requirements, 736À740 schematic, 733f viscosity and type selection, 737t Incompressible fluids, 72 Individual quick freezing (IQF), 530, 530f Input signals to control processes, 183, 183f Intelligent packaging interactive intelligent packaging, 780 objectives, 778À779 simple intelligent packaging, 779À780 Internal energy, 44 Interparticle porosity, 15 IQF See Individual quick freezing (IQF) Isolated system, 11 Isothermal system, 11 Laminar flow, 84, 84f, 87, 95, 309, 626À630 Lamps, 242À244 Latent heat of vaporization, refrigerant, 476 Lewis number, 625 Life cycle assessment (LCA), 245À249 Life cycle energy use, 250f Life cycle materials flow, 256f Lighting, 242À244 Liquid enthalpy, refrigerant, 496 Liquid food freezers, 526À527, 527f Liquid level, sensors, 193À194 Liquid properties, 72À81 density, 73 stress response, 72 viscosity, 73À81, 75f Liquid transport systems, 66À71 LMTD See Log-mean-temperaturedifference (LMTD) Local freezing rate, 549 Log-mean-temperature-difference (LMTD), heat exchanger design, 330À338, 331f, 336f Loose Bulk Density, 171 Low-pressure float valve, 489, 489f Lumen, Lumped system, 289, 291À292 J j factor, temperature prediction in Jenike’s flow function, 177t Joule, Just noticeable difference (JND), 552À554 K Kelvin scale, 3, 21À22 Kilogram, Kinematic viscosity, 79À81 Kinetic energy, 44, 111À112 Kirchoff’s law, 351 M Manipulated variable, 182 Manometer, 137À149, 137f, 139f Marine-type propeller impeller, 734À735, 734f Mass diffusivity, 620 Mass transfer, 617 convective mass transfer, 622À626, 624f dehydration, 680À682 diffusion coefficients, 621t process, 618À632, 619f steady-state diffusion through solids, 621À622 flow over spherical objects, 631À632 laminar flow flat plate, 626À630 pipe, 630 overview, 617À618 856 Index Mass transfer (Continued) packaging materials fixed gas permeability, 773À775, 773t permeability coefficient, 772, 772t steps, 771, 771f symbols, 643 turbulent flow flat plate, 630 pipe, 631 unsteady-state mass transfer diffusion of gases, 638À641 transient-state diffusion, 633À638, 634f Material balance calculations, 34À35, 37, 39 overview, 32À40, 33f Mechanical equilibrium, 11À13 Mechanical vapor recompression system, 588, 588f Membrane separation, 645 concentration polarization, 661À667, 661f, 663f electrodialysis, 647À651, 648f, 650t overview, 645À647, 645f performance of membranes, 658À659 reverse osmosis, 651À658, 651f, 652f, 657t, 667À671 spectrum of separation, 646f structure of membrane, 647f symbols, 672À673 system types comparison, 667t hollow-fiber system, 670f, 671 plate and frame system, 668, 668f spiral-wound system, 668À670, 669f tubular system, 668, 669f ultrafiltration membrane systems, 659À660, 667À671 Metals, physical properties, 809t Meter, Microbial survivor curves, 431À436, 432f, 433f, 434f, 436f Microwave heating, 389 dielectric properties, 391À392, 391f electromagnetic frequencies, 389À397 energy conversion to heat, 392À393 food composition effects, 397 frozen foods, 396À397, 396t mechanisms, 390À391, 391f oven features, 395À396, 395f penetration depth, 393À395 shape, density, and uniform heating, 397 speed, 396 Milk processing, production line, 67f Mixing impellers in agitation equipment geometric ratios, 734t marine-type propeller impeller, 734À735, 734f paddle impeller, 735, 735f power requirements, 736À740 schematic, 733f viscosity and type selection, 737t overview, 731À740 symbols, 741À742 turbine agitator, 736, 736f Moisture content See also Humidity ratio calculations, 18, 37 expression, 17À19 Moisture content dry basis, 18 Moisture content wet basis, 17 Molality, 16 Molarity, 15À16 Mole, Mole fraction, 15À16 Montreal Protocol, 479À480 Moody chart, 97À99, 98f Multiple-effect evaporator, 565À566 See also Triple-effect evaporator N Natural circulation evaporator, 570, 570f Net positive suction head (NPSH), 127À130, 129f Newton, Newton’s law of cooling, 286 Newtonian liquids, 77 Non-Newtonian fluids See also Power law liquid calculations, 166 classification, 157f properties, 156À162 pumping requirement computation, 167À169 Non-Newtonian liquids, 77 Normal stress, 24, 72 NPSH See Net positive suction head (NPSH) NTU See Number of transfer units (NTU) Number of transfer units (NTU), heat exchanger design, 340À343, 340t, 341t, 342f Nusselt number, 846À847 O Offset, 196 Ohm, Ohm’s law, 237À238, 384 Ohmic heating, 387À389 Open system conservation of mass, 30À32 energy balance, 55À56 overview, 10À11 Orifice meter, 143À146, 144f Osmotic pressure, 653À655, 654t Output signals to control processes, 183, 183f P Packaging, 767 active packaging advanced active packaging, 777À778 simple active packaging, 777 functions food protection, 768À769, 768f overview, 767 product communication, 770 product containment, 769À770 product convenience, 770 intelligent packaging interactive intelligent packaging, 780 objectives, 778À779 simple intelligent packaging, 779À780 mass transfer, 770À775 fixed gas permeability, 773À775, 773t permeability coefficient, 772, 772t steps, 771, 771f passive packaging, 777 shelf life ascorbic acid degradation, 785b first-order reaction, 782À787, 783f general rate equation, 780À781 zero-order reaction, 781À782 symbols, 789 Packed Bulk Density, 171 Index Paddle impeller, 735, 735f Particle density, 13, 172À173 Particle flow, 175À176 Particle size distribution, 174t, 175À176 Pascal, 22À23 Pascal-second, 78 Passive packaging, 777 Pasta production, life cycle inventory for, 248t Pasteurization General Method for Process Calculation, 442À458, 443f, 444f processing systems, 422À424, 423f Path, process, 12, 12f Perfect gas law, 26À27 Performance, control system, 182 Permeability coefficient, packaging materials, 772, 772t, 773t Pham method, freezing time determination, 540À545, 541f Phase diagram, water, 27À28, 28f Phase equilibrium, 11À12 PI controller See Proportional integral (PI) controller PID controller See ProportionalÀ integralÀderivative (PID) controller Pipe, 66À68 force balance, 100À107, 101f friction energy loss from fittings, 114À116, 115t laminar flow, 630 pump power requirement calculations, 117, 117t steady-state heat transfer, 291À292, 293f, 294, 294f turbulent flow, 631 Pipeline system, 67À68, 68f Piston displacement, compressor, 484 Pitot tube, 141À143, 141f, 142f Plank’s equation, freezing time determination, 536À540, 536f Plastic material, 72 Plate freezer, 522À524, 523f, 524f Plate heat exchanger design, 343À350 principles, 266À270, 267f, 268f, 269f Plate-and-frame membrane system, 668, 668f Pneumatic valve, 189À190, 190f Poise, 78 Poiseuille’s Law, 94 Porosity, 13À15 Positive displacement pumps, 71, 71f Potential energy, 44, 113 Pouch processing mathematical methods for process calculation, 464À467 systems, 427 Powder flow, 177t, 178 Power, 59 Power factors, 237 Power law liquid average velocity, 164 definition, 158À159 friction factor, 164À166 generalized Reynolds number, 165f velocity profile, 163 volumetric flow rate, 163À164 Power number, 738, 739f Practical storage life (PSL), frozen foods, 552, 553t Prandtl number, 315, 625, 814t, 818t Precision, 196 Preservation, 421 See also Dehydration; Freezing; Refrigeration General Method for Process Calculation aseptic processing and packaging, 450À458, 452f, 453f, 453t overview, 442À458, 443f pasteurization, 444À447, 444f, 445f sterilization, 447À450, 448f, 449f mathematical methods for process calculation Formula Method, 460À467, 462f pouch processing, 464À467 microbial survivor curves, 431À436, 432f, 433f, 434f, 436f processing systems blanching, 423À424, 424f pasteurization, 422À424, 423f pulsed electric field processing systems, 430À431, 431f radio frequency approaches, 431 sterilization systems aseptic processing systems, 427, 428f batch systems, 424À426, 425f continuous retort systems, 426, 427f 857 pouch processing systems, 427 ultra-high pressure processing systems, 428À430, 429f spoilage probability, 441À442 symbols, 471À472 temperature and microbial survival, 436À440, 437f, 439f, 440f thermal death time, 440, 461 Pressure, 22À25, 23f, 72 Pressure energy, 111 Pressure sensors, 194À195, 194f PressureÀenthalpy charts, refrigeration, 490À499, 491f, 492f, 493f, 507f, 821f PressureÀenthalpy tables, refrigeration, 495À496, 505 Process controls, 179À191 design of control system, 183À191 control strategy, 183À184 feedback control system, 184À185, 185f, 186f feedforward control system, 185À186 final control element, 189À191, 190f on-off control, 187À188, 188f proportional controller, 188 proportional integral controller, 189 proportionalÀintegralÀderivative controller, 189 stability and modes of control functions, 186À187, 186f transmission lines, 189 input and output signals, 183, 183f manual, 180À181, 181f overview, 179À191 sensors See Sensors symbols, 205À207 tomato canning, 180f variables and performance indicators, 181À182 Proportional controller, 188 Proportional integral (PI) controller, 189 ProportionalÀintegralÀderivative (PID) controller, 189 Protein coefficients to estimate food properties, 808t composition of selected foods, 807t Pseudoplastic liquid, 158À159 PSL See Practical storage life (PSL) 858 Index Psychrometrics, 593 air adiabatic saturation, 599À600, 600f composition, 593, 594t dry bulb temperature, 595 enthalpy, 594À595 specific heat, 594 specific volume, 594 charts air-conditioning process evaluation drying, 610À611, 610f heating or cooling, 606À608, 607f mixing of air, 608À609, 608f, 609f construction, 604À606, 604f, 606f high-temperature chart, 819f low-temperature chart, 820f definition, 593 dew-point temperature, 596À597 GibbsÀDalton law, 596 humid heat, 598 humidity ratio, 597À598 relative humidity, 598 specific volume of airÀwater vapor mixture, 581À586 symbols, 614À615 water vapor enthalpy, 596 gas constant equation, 595 specific heat, 595 specific volume, 595 wet bulb temperature, 601À604, 603f Puff-drying, 684À685 Pulsed electric field processing systems, 430À431, 431f Pump, 66 affinity laws, 136À137 centrifugal pumps, 68À70, 70f, 120À121, 121f, 129b classification, 68À71, 69f net positive suction head, 127À130, 129f performance characteristics calculations, 134b curves, 126À127, 127f parameters, 122À126, 124f positive displacement pumps, 71, 71f power requirements, 116À120, 117t, 201 selection, 120À137, 132f Pump head, 125À126, 133f, 136f R R-12, 822t R-134a, 830t R-717 See Ammonia Radian, Radiation heat transfer between two objects, 352À355, 353f, 354f, 355f overview, 287À288 surface characteristics importance, 350À352, 350f Radiation absorbed, 350, 350f reflected, 350, 350f transmitted, 350, 350f Range, 196 Reciprocating pump, 71 Refrigerant-12, 478À479 Refrigerant-22, 479 Refrigeration, 475 coefficient of performance, 502 components of system compressor, 483À486, 483f, 490À499, 501 condenser, 486À488, 487f, 488f, 501 evaporator, 481À483, 482f, 501 expansion valve, 488À490, 488f, 489f, 490f overview, 480À490, 480f cooling load, 500À501 multistage systems flash gas removal system, 512À516, 513f, 514f, 515f overview, 512À516 pressureÀenthalpy charts, 490À499, 491f, 492f, 493f, 494f, 821f, 825f, 829f, 833f, 834f pressureÀenthalpy tables, 495À496, 505b refrigerant characteristics in selection, 476À480, 478t computer-aided determination of thermodynamic properties, 496À499, 498t designations, 479t flow rate, 502À512 principles, 475À476, 476f properties of saturated liquid and vapor refrigerants R-12, 822t R-134a, 830t R-717, 826t symbols, 519À520 Relative humidity, 598 Repeatability, 196 Residence time, 426, 763 Residence time evaporators, 569À576 freezers, 523, 525À526 Resistance temperature detector (RTD), 192, 193f, 193t Resistance electrical, 236 filtration, 712 thermal, 290À292, 291b, 292f, 319 Resolution, 196 Resource sustainability, 211 electric power utilization, 234À244 energy, water and environment, 244À257 fuel utilization, 228À234 steam generation, 211À228 sustainability indicators, 257 Reverse osmosis, 651, 651f, 652f, 653À656, 657t, 667À671 Reynolds number, 84À88, 165À166, 722À724, 722f, 737À738, 739f Rising/falling-film evaporator, 571À573, 572f Rising-film evaporator, 570, 571f Robustness, 182 Rotary pump, 71 Rotational viscometer, 151À154, 152f Rotor, 241 motor, 241f scraped-surface heat exchanger, 273 S Saturated liquid, 27, 218 Saturated vapor, 27, 218, 260À261 Saturated vapor enthalpy, refrigerant, 497, 509b Saturated vapor specific volume, refrigerant, 497 Saturation pressure, 27 Saturation temperature, refrigerant, 496 Sauter mean diameter, 173À174 Schmidt number, 625 Scraped-surface heat exchanger, 271À273, 272f Index Second, Second law of thermodynamics, 42À43 Sedimentation, 721À726 high-concentration suspensions, 724À726 low-concentration suspensions, 721À724, 722f symbols, 741À742 Seebeck effect, 191À192 Sensitivity, 196 Sensors, 191À196 data acquisition terminology, 196 dynamic response characteristics, 196À199, 197f flow, 195À196 liquid level, 193À194 pressure, 194À195, 194f temperature, 191À193, 191f, 192t, 193f, 193t, 194f, 197f Set value, 184 Shear rate, 105, 157f, 158f, 159f Shear stress, 73À74 Newton’s equation for strain relationship, 619 principles, 69f, 72, 77, 157f, 176f Shear-thickening liquid, 159À160 Shear-thinning liquid, 157À158 Shelf life ascorbic acid degradation, 785b first-order reaction, 782À787, 783f general rate equation, 780À787 zero-order reaction, 781À782 Sherwood number, 626 SI units See Units Siebel’s correlation equation, 413 Single screw extruder, 753f, 754À756, 754f, 755f Single-effect evaporator, 565À566 design, 576À580, 576f, 579f overview, 566f Single-phase electricity, 236 Slab conductive steady-state heat transfer, 289À292 temperature of infinite slab plane, 843f Solid density, 13, 14t Solid food transport, 170À179 granular food flow, 176À179 properties of granular materials and powders bulk density, 171 particle density, 172À173 particle flow, 175À176, 177t particle size and size distribution, 173À175, 174t Specific heat, 22 air, 594, 818t foods, 799t ice properties as function of temperature, 804t principles, 275À278, 277b water, 814t water vapor, 595À596 Specific humidity See Humidity ratio Specific volume air, 594 airÀwater vapor mixture, 567À569, 581À586 water vapor, 595À596 Spiral-wound membrane system, 668À670, 669f Spoilage probability, 441À442 Spray dryer, 685À686, 686f Stagnation pressure, 140 Standard air, 593, 594t Standard atmospheric pressure, 23 State, system, 11À13 Static pressure, 25, 139À140 Statistical thermodynamics, 41 Stator, motor, 241f Steady flow device, 108f energy equations frictional energy loss major losses, 113 minor losses, 113 pipe fittings, 114À116, 115t sudden contraction, 113À114 sudden expansion, 114 kinetic energy, 111À112 overview, 107À120 potential energy, 113 pressure energy, 111 pump power requirements, 116À120, 117t Steady-state heat transfer conductive heat transfer pipe, 292, 293f, 294b, 294f rectangular slab, 289À292 convective heat transfer coefficient estimation, 303À319, 303f, 304f, 306f, 311f 859 forced convection, 308À315, 308f, 310f, 314b free convection, 315À319, 315f, 316t, 317b, 318f overall heat transfer coefficient estimation, 320À324, 320f, 322b, 322f thermal resistance, 319 multilayered systems composite cylindrical tube in series, 298À302, 299f, 302f, 395f composite rectangular wall in series, 295À298, 296f, 297f principles, 288À289, 288f thermal resistance, 290À292, 292f Steam, 211À212 generation systems, 212À214, 213f, 214f heating calculations, 220b, 226b, 258 phase change thermodynamics, 215À223, 216f, 217f, 219b saturated steam properties, 815t superheated steam properties, 817t transport, 224À228 Steam economy, 578 Steam quality, 218 Steam tables, 218À223 Steam-infusion heat exchanger, 273À274, 273f Steradian, Sterilization systems aseptic processing systems, 427À428, 428f batch systems, 424À426, 425f continuous retort systems, 426, 427f General Method for Process Calculation, 442À458, 448f, 449f pouch processing systems, 427 Stream line, 81À82 Stress, 72 Subcooled liquid, 27 Suction head, 122, 123f Suction lift, 122 Superheated vapor, 27, 218 Superheated vapor enthalpy, refrigerant, 497 Superheated vapor specific volume, refrigerant, 497 Surface area, foods, 59À60, 60t Sustainability, defined, 244 860 Index Sustainability indicators, 257 Symbols centrifugation, mixing, and sedimentation, 741À742 dehydration, 707À708 drawing symbols for engineering process equipment, 835À839 evaporation, 591 extrusion, 764 fluid flow, 205À207 freezing of food, 560À561 heat transfer, 414À417 mass transfer, 643 membrane separation, 672À673 packaging, 789 preservation processes, 471À472 psychrometrics, 614À615 refrigeration, 519À520 resource sustainability, 261À262 units, 63 System extensive properties, 12À13 intensive properties, 13 overview, 10À11, 10f state, 11À13 T Temperature sensors, 191À193, 193f, 193t, 197f Temperature infinitely long cylinder axis, 842f infinite slab plane, 843f microbial survival, 436À440, 437f, 438b, 439f principles, 20À22 sensors, 191À193, 191f, 192t, 193f, 193t, 194f, 197f sphere geometric center, 841f TemperatureÀtime charts, transient heat transfer calculations, 368À376, 374f, 375f, 376f Thawing time, 549À551 Thermal conductivity See also Conductive heat transfer air as function of temperature, 818t foods, 800t frozen food, 531, 532f ice properties as function of temperature, 804t principles, 278À280, 281b water, 814t Thermal death time, 440, 463À464 Thermal diffusivity air, 818t foods, 802t principles, 280À282 water, 814t Thermal equilibrium, 11À12 Thermal recompression system, 587, 587f Thermal resistance, 290À292, 291b, 292f Thermocouple, 191À192, 191f, 192t, 193f, 193t Thermodynamics first law of thermodynamics, 42 overview, 41 phase change thermodynamics, 215À218, 216f, 217f second law of thermodynamics, 42À43 Zeroth Law of Thermodynamics, 21 Thermostatic expansion valve, 490, 490f Thermowell, 192À193, 194f Three-phase electricity, 236 Time constant, 197À198 Time-dependent non-Newtonian liquids, 160 Time-independent non-Newtonian liquids, 157 Total energy, 44À45 Total energy balance, 56À59 Transient heat transfer, 376À383, 378f, 379f, 380f, 382f Transient heat transfer See Unsteadystate heat transfer Transitional flow, 84, 84f, 87b, 309 Transmission lines, 189 Tray drier, 682À683, 682f, 683f Triple-effect evaporator design, 581À586, 581f overview, 566f Tubular heat exchanger design, 330À338, 331f, 334b, 336b, 337f overview, 270À271, 270f, 271f, 272f Tubular membrane system, 668, 669f Tunnel dryer, 683À684, 683f, 684f Turbine agitator, 736, 736f Turbulent flow, 84, 84f, 309À310, 630, 631b Twin screw extruder, 756À757, 757f U UHP processing systems See Ultra-high pressure (UHP) processing systems Ultrafiltration membrane systems, 659À660, 660b, 667À668 Ultra-high pressure (UHP) processing systems, 427À430 Uncontrolled variable, 182 Units, base units, 2À3, 3t capitalization rules, 794 derived units, 3À4, 5t, 6t, 795À798 English unit conversion factors, 796t, 798t plural expression, 795 prefixes, 793À794, 793t problems, 7b punctuation rules, 795 supplementary units, 4À10, 6t Universal gas constant, 620 Unsteady-state heat transfer external versus internal resistance to heat transfer, 357À358, 358f finite internal and surface resistance to heat transfer, 363À366, 365f, 366f, 367f finite objects, 366À368, 367f lumped system analysis of negligible internal resistance to heat transfer, 358À363, 360b, 361b, 361f negligible surface resistance to heat transfer, 366 overview, 355, 357f temperature prediction with fh and j factors, 376À383, 378f, 379f, 380f, 381b, 382b, 382f temperatureÀtime charts, 368À376, 374f, 375f, 376f Unsteady-state mass transfer diffusion of gases, 638À641 transient-state diffusion, 633À638, 634f U-tube manometer, 142À143 V Vacuum, 23À24 Vapor See Water vapor Vapor pressure, refrigerant, 496 Variable flow meter, 147À148, 147f Index Variable-area flow meter, 147À148 Variables controlled, 182 disturbances in, 182 manipulated, 182 uncontrolled, 182 Velocity profile fully developed flow, 90À96 power law fluid, 163 Venturi meter, 147, 147f Viscosity, 66, 73À74 air as function of temperature, 818t calculations, 79b foods, 803t impeller type selection, 737t kinematic viscosity, 79 materials at room temperature, 77t measurement capillary tube viscometer, 149À151, 149f, 150f rotational viscometer, 151À154, 152f temperature effects, 154À156 overview, 73À81, 75f water absolute viscosity, 814t kinematic viscosity, 814t Volt, Voltage, 236 Volume, equations, 840t Volumetric coefficient of expansion, air as function of temperature, 818t W Water activity, 676f, 677f, 688 Water coefficients to estimate food properties, 808t composition of selected foods, 807t density as function of temperature, 73f freezing diagram, 535f ice properties as function of temperature, 804t phase change thermodynamics, 215À218, 216f, 217f phase diagram, 27À28, 28f saturation pressure, 814t Water-tube steam generator, 212, 213f Water vapor See also Psychrometrics; Steam enthalpy, 596 861 gas constant equation, 595 specific heat, 595 specific volume, 594À595 Watt, 4, 237 Weber, Weight, units, 10 Wet bulb temperature, 601À604, 602b, 603b, 603f Work definition of, 50 energy balance calculations, 51À55 frictional forces, 51 gravitational forces, 49 moving boundary-associated work, 47À49, 47f, 48f shaft rotation, 50À51, 50f units, 46À55 velocity change, 49À50 Y Yield stress, 160, 161b Z Zero-order reaction, shelf life, 781À782 Zeroth Law of Thermodynamics, 21 This page intentionally left blank Food Science and Technology International Series Amerine, M.A., Pangborn, R.M., and Roessler, E.B., 1965 Principles of Sensory Evaluation of Food Glicksman, M., 1970 Gum Technology in the Food Industry Joslyn, M.A., 1970 Methods in Food Analysis, Second Ed Stumbo, C R., 1973 Thermobacteriology in Food Processing, Second Ed Altschul, A.M (Ed.), New Protein Foods: Volume 1, Technology, Part A—1974 Volume 2, Technology, Part B—1976 Volume 3, Animal Protein Supplies, Part A—1978 Volume 4, Animal Protein Sup-plies, Part B—1981 Volume 5, Seed Storage Proteins—1985 Goldblith, S.A., Rey, L., and Rothmayr, W.W., 1975 Freeze Drying and Advanced Food Technology Bender, A.E., 1975 Food Processing and Nutrition Troller, J.A., and Christian, J.H.B., 1978 Water Activity and Food Osborne, D.R., and Voogt, P., 1978 The Analysis of Nutrients in Foods Loncin, M., and Merson, R.L., 1979 Food Engineering: Principles and Selected Applications Vaughan, J G (Ed.), 1979 Food Microscopy Pollock, J R A (Ed.), Brewing Science, Volume 1—1979 Volume 2—1980 Volume 3—1987 Christopher Bauernfeind, J (Ed.), 1981 Carotenoids as Colorants and Vitamin A Precursors: Technological and Nutritional Applications Markakis, P (Ed.), 1982 Anthocyanins as Food Colors Stewart, G.G., and Amerine, M.A (Eds.), 1982 Introduction to Food Science and Technology, Second Ed 863 864 Food Science and Technology International Series Iglesias, H.A., and Chirife, J., 1982 Handbook of Food Isotherms: Water Sorption Parameters for Food and Food Components Dennis, C (Ed.), 1983 Post-Harvest Pathology of Fruits and Vegetables Barnes, P.J (Ed.), 1983 Lipids in Cereal Technology Pimentel, D., and Hall, C.W (Eds.), 1984 Food and Energy Resources Regenstein, J.M., and Regenstein, C.E., 1984 Chemistry: An Introduction for Food Scientists Food Protein Gacula Jr M.C., and Singh, J., 1984 Statistical Methods in Food and Consumer Research Clydesdale, F.M., and Wiemer, K.L (Eds.), 1985 Iron Fortification of Foods Decareau, R.V., 1985 Microwaves in the Food Processing Industry Herschdoerfer, S.M (Ed.), Quality Control in the Food Industry, second edition Volume 1—1985 Volume 2—1985 Volume 3—1986 Volume 4—1987 Urbain, W.M., 1986 Food Irradiation Bechtel, P.J., 1986 Muscle as Food Chan, H.W.-S., 1986 Autoxidation of Unsaturated Lipids Cunningham, F.E., and Cox, N.A (Eds.), 1987 Microbiology of Poultry Meat Products McCorkle Jr C.O., 1987 Economics of Food Processing in the United States Japtiani, J., Chan Jr., H.T., and Sakai, W.S., 1987 Tropical Fruit Processing Solms, J., Booth, D.A., Dangborn, R.M., and Raunhardt, O., 1987 Food Acceptance and Nutrition Macrae, R., 1988 HPLC in Food Analysis, Second Ed Pearson, A.M., Biochemistry and Young, R.B., 1989 Muscle and Meat Penfield, M.P., and Campbell, A.M., 1990 Experimental Food Science, Third Ed Food Science and Technology International Series Blankenship, L.C., 1991 Colonization Control of Human Bacterial Enteropathogens in Poultry Pomeranz, Y., 1991 Functional Properties of Food Components, Second Ed Walter, R.H., 1991 The Chemistry and Technology of Pectin Stone, H., and Sidel, J.L., 1993 Sensory Evaluation Practices, Second Ed Shewfelt, R.L., and Prussia, S.E., 1993 Postharvest Handling: A Systems Approach Nagodawithana, T., and Reed, G., 1993 Enzymes in Food Processing, Third Ed Hoover, D.G., and Steenson, L.R., 1993 Bacteriocins Shibamoto, T., and Bjeldanes, L., 1993 Introduction to Food Toxicology Troller, J.A., 1993 Sanitation in Food Processing, Second Ed Hafs, D., and Zimbelman, R.G., 1994 Low-fat Meats Phillips, L.G., Whitehead, D.M., and Kinsella, J., 1994 StructureFunction Properties of Food Proteins Jensen, R.G., 1995 Handbook of Milk Composition Roos, Y.H., 1995 Phase Transitions in Foods Walter, R.H., 1997 Polysaccharide Dispersions Barbosa-Canovas, G.V., Marcela Gongora-Nieto, M., Pothakamury, U.R., and Swanson, B.G., 1999 Preservation of Foods with Pulsed Electric Fields Jackson, R.S., 2002 Wine Tasting: A Professional Handbook Bourne, M.C., 2002 Food Texture and Viscosity: Concept and Measurement, second ed Caballero, B., and Popkin, B.M (Eds.), 2002 The Nutrition Transition: Diet and Disease in the Developing World Cliver, D.O., and Riemann, H.P (Eds.), 2002 Foodborne Diseases, Second Ed Kohlmeier, M., 2003 Nutrient Metabolism 865 866 Food Science and Technology International Series Stone, H., and Sidel, J.L., 2004 Sensory Evaluation Practices, Third Ed Han, J.H., 2005 Innovations in Food Packaging Sun, D.-W (Ed.), 2005 Emerging Technologies for Food Processing Riemann, H.P., and Cliver, D.O (Eds.), 2006 Foodborne Infections and Intoxications, Third Ed Arvanitoyannis, I.S., 2008 Waste Management for the Food Industries Jackson, R.S., 2008 Wine Science: Principles and Applications, Third Ed Sun, D.-W (Ed.), 2008 Computer Vision Technology for Food Quality Evaluation David, K., and Thompson, P., (Eds.), Nanotechnology Learn From Biotechnology? 2008 What Can Arendt, E.K., and Bello, F.D (Eds.), 2008 Gluten-Free Cereal Products and Beverages Bagchi, D (Ed.), 2008 Nutraceutical and Functional Food Regulations in the United States and Around the World Singh, R.P., and Heldman, D.R., 2008 Introduction to Food Engineering, Fourth Ed Berk, Z., 2009 Food Process Engineering and Technology Thompson, A., Boland, M., and Singh, H (Eds.), 2009 Milk Proteins: From Expression to Food Florkowski, W.J., Prussia, S.E., Shewfelt, R.L and Brueckner, B (Eds.), 2009 Postharvest Handling, Second Ed Gacula Jr., M., Singh, J., Bi, J., and Altan, S., 2009 Statistical Methods in Food and Consumer Research, Second Ed Shibamoto, T., and Bjeldanes, L., 2009 Introduction to Food Toxicology, Second Ed BeMiller, J and Whistler, R (Eds.), 2009 Starch: Chemistry and Technology, Third Ed Jackson, R.S., 2009 Wine Tasting: A Professional Handbook, Second Ed Food Science and Technology International Series Sapers, G.M., Solomon, E.B., and Matthews, K.R (Eds.), 2009 The Produce Contamination Problem: Causes and Solutions Heldman, D.R., 2011 Food Preservation Process Design Tiwari, B.K., Gowen, A and McKenna, B (Eds.), 2011 Pulse Foods: Processing, Quality and Nutraceutical Applications Cullen, PJ., Tiwari, B.K., and Valdramidis, V.P (Eds.), 2012 Novel Thermal and Non-Thermal Technologies for Fluid Foods Stone, H., Bleibaum, R., and Thomas, H., 2012 Sensory Evaluation Practices, Fourth Ed Kosseva, M.R and Webb, C (Eds.), 2013 Food Industry Wastes: Assessment and Recuperation of Commodities Morris, J.G and Potter, M.E (Eds.), 2013 Foodborne Infections and Intoxications, Fourth Ed 867 ... Processing Technology Written for food scientists, it is difficult to imagine any food science or food engineering professional in the US who has not used ? ?Introduction to Food Engineering? ?? as a textbook... undergraduate food engineering courses to be taken by undergraduate Food Science majors The topics have been selected to illustrate applications of engineering during the handling, processing, storage,... of the 5th edition of ? ?Introduction to Food Engineering? ?? is very timely to equip or update professors with an excellent teaching tool To a great extent, Food Engineering deals with the understanding