1. Trang chủ
  2. » Hoá học lớp 12

Đề kiểm tra 15 phút lớp 9 môn Toán Chương 2 Hình Học - Bài 7,8

4 36 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 402,32 KB

Nội dung

Trên cùng nửa mặt phẳng bờ là AB, vẽ nửa đường tròn tâm O’ đường kính OA.. O’D và OC song song với nhau.[r]

(1)

Đề kiểm tra 15 phút mơn Tốn lớp

Bài – Chương Hình học: Vị trí tương đối hai hình trịn Đề số

Cho nửa đường tròn tâm O, đường kính AB Trên nửa mặt phẳng bờ AB, vẽ nửa đường trịn tâm O’ đường kính OA Vẽ dây cung AC (O) cắt nửa đường tròn (O’) D Chứng minh:

a Đường tròn (O) (O’) tiếp xúc A b O’D OC song song với Giải:

a Ta có ba điểm A, O’, O thẳng hàng OO’ = OA – O’A (d = R – R’) Chứng tỏ (O) (O’) tiếp xúc A

b Ta có: ∆AO’D cân (vì O’A = O’D = R’)  A1D1 1 Tương tự ∆AOC cân A1C1 2

Từ (1) (2) ta có: D1C1 ⇒ O’D// OC (cặp góc đồng vị nhau)

Chú ý: Các bạn giải thêm câu c sau đây: Chứng minh D trung điểm AC OD song song với BC

Hướng dẫn : D thuộc nửa đường trịn đường kính AO nên ADO 90 Khi D trung điểm AC (định lí đường kính dây cung)

⇒ OD đường trung bình ∆AOC, suy OD // BC Đề số

Cho đoạn thẳng OO’ = 13cm Dựng đường tròn (O; 12cm) (O’; 5cm) a Chứng tỏ (O) (O’) cắt hai điểm phân biệt A B

(2)

a Ta có: OO’ < R + R’ (13 < 12 + 5) nên đường tròn (O) (O’) cắt hai điểm phân biệt A B

b Ta có: ABC 90 , đó:

  180

ABCABD  nên C, B, D thẳng hàng Đề số

Cho đoạn thẳng OO’ điểm A nằm hai điểm O O’

Vẽ đường tròn (O; OA) đường tròn (O’; O’A) Qua A vẽ đường thẳng cắt (O) B cắt (O’) C

a Chứng minh (O) (O’) tiếp xúc

b Vẽ đường kính BD (O) CE (O’) Chứng minh D, A, E thẳng hàng Giải:

a Ta có: OO’ = OA + O’A (d = R + R’) ⇒ (O) (O’) tiếp xúc ngồi A b Ta có: BD đường kính (O) nên BAD  90 DABAhay DABC Tương tự EA ⊥ BC

Vì DA EA phải trùng hay ba điểm D, A, E thẳng hàng Đề số

Cho tam giác ABC vng A có AB = 6cm, AC = 8cm, đường cao AH Đường trịn (O) đường kính AH cắt AB D, đường trịn (O’) đường kính CH cắt AC E a Chứng minh (O) (O’) cắt hai điểm phân biệt

b Chứng minh đường thẳng DE tiếp tuyến (O’) Giải:

a ∆ABC vng A, ta có: 2 2  

6 10

(3)

Lại có: AH.BC = AB.AC (hệ thức lượng)   6.8 4,8 10 AB AC AH cm BC    

Do bán kính (O) : R = 2,4 (cm) Ta có:

ACBC HC (hệ thức lượng)   2 6, 10 AC HC cm BC    

nên bán kính (O’) R’ = 3,2cm

Mặt khác: OO’ đường trung bình ∆AHC nên ' 1.8 4 

2

OOAC  cm

Ta có: OO’ < R + R’ (4 < 2,4 + 3,2) chứng tỏ (O) (O’) cắt hai điểm phân biệt b Ta có:  ADHAEH  90 (AH đường kính) BAC 90 (gt) nên ADHE hình chữ nhật (có ba góc vng) O giao điểm hai đường chéo AH DE, OH = OE ⇒ ∆OHE cân O

  OHE OEH  

Mặt khác, ∆O’HE cân O’ (O’H = O’E = R’)

 ' ' ,  ' 90

O HE O EH ma OHE O HE

     (gt)

Do OEH O EH'  90 hay OE ⊥ O’E ⇒ DE tiếp tuyến đường tròn (O’)

Đề số

Cho hai đường tròn (O) (O’) tiếp xúc A Đường thẳng OO’ cắt (O) (O’) B C (khác A) Gọi DE tiếp tuyến chung (O) (O’) Trong đó, D ∈ (O), E ∈ (O’) Gọi H giao điểm hai đường thẳng BD CE Chứng minh :

(4)

b HA tiếp tuyến chung hai đường tròn (O) (O’) Giải:

a DE tiếp tuyến chung (O) (O’) nên DE ⊥ OD DE ⊥ O’E ⇒ OD // O’E

Do đó:  DOO'EO O' 180 (cặp góc phía)  ' 180

DOB EO C

   

Các tam giác BOD CO’E cân O O’ nên:

     

2B2C180 2 B C 180    B C 90 Trong tam giác BHC ta có BHC 90 hay DHE 90

b Dễ thấy tứ giác HDAE hình chữ nhật (có ba góc vng)

Gọi I giao điểm hai đường chéo AH DE, ta có ID = IA ( tính chất hai đường chéo hình chữ nhật)

Các tam giác ODI OAI có : OI chung, DI = AI (cmt), OD = OA (=R), ∆ODI = ∆OAI (c.c.c)

  90

OAI ODI

Ngày đăng: 08/02/2021, 07:26

TỪ KHÓA LIÊN QUAN

w