1. Trang chủ
  2. » Đề thi

Postbuckling Behavior of Functionally Graded Multilayer Graphene Nanocomposite Plate under Mechanical and Thermal Loads on Elastic Foundations

13 6 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 499,22 KB

Nội dung

[9, 10] studied buckling and postbuckling of biaxially compressed functionally graded multilayer graphene nanoplatelet-reinforced polymer composite plates (excluding th[r]

(1)

110

Original Article

Postbuckling Behavior of Functionally Graded Multilayer Graphene Nanocomposite Plate under Mechanical and

Thermal Loads on Elastic Foundations Pham Hong Cong1, Nguyen Dinh Duc2,

1Centre for Informatics and Computing (CIC), Vietnam Academy of Science and Technology,

18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

2

Advanced Materials and Structures Laboratory, VNU University of Engineering and Technology (UET), 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Received 08 November 2019

Revised 03 December 2019; Accepted 03 December 2019

Abstract: This paper presents an analytical approach to postbuckling behaviors of functionally graded multilayer nanocomposite plates reinforced by a low content of graphene platelets (GPLs) using the first order shear deformation theory, stress function and von Karman-type nonlinear kinematics and include the effect of an initial geometric imperfection The weight fraction of GPL nano fillers is assumed to be constant in each individual GPL-reinforced composite (GPLRC) The modified Halpin-Tsai micromechanics model that takes into account the GPL geometry effect is adopted to estimate the effective Young’s modulus of GPLRC layers The plate is assumed to resting on Pasternak foundation model and subjected to mechanical and thermal loads The results show the influences of the GPL distribution pattern, weight fraction, geometry, elastic foundations, mechanical and temperature loads on the postbuckling behaviors of FG multilayer GPLRC plates

Keywords: Postbuckling; Graphene nanocomposite plate; First order shear deformation plate theory

1 Introduction

Advanced materials have been considered promising reinforcement materials To meet the demand, some smart materials are studied and created such as FGM, piezoelectric material, nanocomposite, magneto-electro material and auxetic material (negative Poisson’s ratio)

 Corresponding author

Email address: ducnd@vnu.edu.vn

https://doi.org/10.25073/2588-1140/vnunst.4972

(2)

remarkable electrical and thermal conductivities [3-5] It was reported by researchers that the addition of a small percentage of graphene fillers in a composite could improve the composite’s mechanical, electrical and thermal properties substantially [6-8]

The research on buckling and postbuckling of the functionally graded multilayer graphene nanocomposite plate and shell has been attracting considerable attention from both research and engineering Song et al [9, 10] studied buckling and postbuckling of biaxially compressed functionally graded multilayer graphene nanoplatelet-reinforced polymer composite plates (excluding thermal load and elastic foundation) Wu et al [11] investigated thermal buckling and postbuckling of functionally graded graphene nanocomposite plates Yang et al [12] analyzed the buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams Shen et al [13] studied the postbuckling of functionally graded graphene-reinforced composite laminated cylindrical panels under axial compression in thermal environments Stability analysis of multifunctional advanced sandwich plates with graphene nanocomposite and porous layers was considered in [14] Buckling and post-buckling analyses of functionally graded graphene reinforced by piezoelectric plate subjected to electric potential and axial forces were investigated in [15]

Some researches using analytical method, stress function method to study graphene structures can be mentioned [16, 17, 18] In [16], the author considered nonlinear dynamic response and vibration of functionally graded multilayer graphene nanocomposite plate on viscoelastic Pasternak medium in thermal environment 2D penta-graphene model was used in [17, 18]

From overview, it is obvious that the postbuckling of graphene plates have also attracted researchers’ interests and were studied [9, 10, 11] However, in [9, 10] the authors neither considered thermal load nor elastic

foundation In [11], the authors used differential quadrature (DQ) method) but did not mention thermal load, elastic foundation and imperfect elements In addition, in [9, 10, 11] the stress function method was not used to the study

Therefore, we consider postbuckling behavior of functionally graded multilayer graphene nanocomposite plate under mechanical and thermal loads and using the analytical method (stress function method, Galerkin method) Nomenclature

,

GPL m

E E The Young’s moduli of the GPL

and matrix, respectively

, ,

GPL GPL GPL

a b t

The length, width and thickness of GPL nanofillers, respectively

,

GPL m

v v The Poisson’s ratios with the subscripts “GPL” and “m” refering to the GPL and matrix, respectively ,

GPLm The thermal expansion coefficients with the subscripts “GPL” and “m” referring to the GPL and matrix, respectively

2 Functionally graded multilayer GPLRC plate model

A rectangular laminated composite plate of length a, width b and total thickness h that is composed of a total of NL on Pasternak foundation model, as shown in Figure

X

Z

Y a

b

0.5h 0.5h

Pasternak layer (KG) Winkler layer (KW)

(3)

The three distribution patterns of GPL nanofillers across the plate thickness are shown in Figure In the case of X-GPLRC, the surface layers are GPL rich while this is inversed in

O-GPLRC where the middle layers are GPL rich As a special case, the GPL content is the same in each layer in a U-GPLRC plate

U-GPLRC X-GPLRC O-GPLRC

Figure Different GPL distribution patterns in a FG multilayer GPLRC plate

Functionally graded multilayer GPLRC plates with an even number of layers are considered in this paper The volume fractions

GPL

V of the k layer for the three distribution patterns shown in figure are governed by Case 1:

U-GPLRC

( )k  * GPL GPL

V V (1)

Case 2: X-GPLRC

( ) *

2

k L

GPL GPL L

k N

V V

N

 

 (2)

Case 3:

O-GPLRC ( ) *

2

2

k L

GPL GPL

L

k N

V V

N

 

 

   

 (3)

where k1, 2,3 , NL and NL is the total number of layers of the plate The total volume fraction of GPLs, *

GPL

V , is determined by

  

* W

W / W

GPL GPL

GPL GPL m GPL

V

 

  (4)

in which WGPL is GPL weight fraction; GPL and m are the mass densities of GPLs and the polymer matrix, respectively

The modified Halpin-Tsai micromechanics model [9] that takes into account the effects of nanofillers’ geometry and dimension is used to estimate the effective Young’s modulus of GPLRCs

1

3

8

L L GPL T T GPL

m m

L GPL T GPL

V V

E E E

V V

   

 

 

   

  (5)

Where

 

 //  1,  // 

GPL m GPL m

L T

GPL m L GPL m T

E E E E

E E E E

 

 

 

 

  (6)

   

2 / , /

L aGPL tGPL T bGPL tGPL

   

According to the rule of mixture, the Poisson’s ratio v and thermal expansion coefficient  of GPLRCs are

  

 

 

m m GPL GPL

m m GPL GPL

v v V v V

V V (7)

where Vm 1 VGPL is the matrix volume fraction 3 Theoretical formulations

3.1 Governing equations

Suppose that the FG multilayer GPLRC plate is subjected to mechanical and thermal loads In the present study, the first order shear deformation theory (FSDT) is used to obtain the equilibrium, compatibility equations

According to the FSDT, the displacements of an arbitrary point in the plate are given by [19]

     

     

   

, , , ,

, , , ,

, , ,

 

 

X Y

U X Y Z U X Y Z X Y

V X Y Z V X Y Z X Y

W X Y Z W X Y

 (8)

(4)

   

2

, ,

0

,

0

, , ,

0

, ,

, , , ,

, ,

1 2

  

 

   

     

          

         

          

           

 

 

 

 

    

   

X X

XX X X X X

YY Y Y Y Y Y Y

XY XY XY X Y Y X

Y X X Y

X X XZ

Y Y YZ

U W

z V W Z

U V W W

W W

   

   

    

 

 

(9)

where X0 and Y0 are normal strains and 0XYis the shear strain in the middle surface of the plate and XZ, YZ are the transverse shear strains components in the plans XZ and YZ respectively

U, V, W are displacement components

corresponding to the coordinates (X, Y, Z), X and Y are the rotation angles of normal vector with Y and X axis

The stress components of the k layer can be obtained from the linear elastic stress-strain constitutive relationship as

       

11 12

12 22

44 55

66

0 0

0 0

0 0 0

0 0 0

0 0 0

  

  

 

 

 

 

 

      

 

      

 

     

         

      

 

      

 

      

   

      

      

k

k k k

XX XX

YY YY

YZ YZ

XZ XZ

XY XY

B B

B B

B T

B B

(10)

where T is the variability of temperature in the environment containing the plate and

                 

 

11 22 2, 12 2, 44 55 66

1 1 2 1

     

  

k k k

k k E k vE k k k E

B B B B B B

v v v (11)

According to FSDT, the equations of motion are [19]:

,  , 0, X X XY Y

N N (12)

,  , 0, XY X Y Y

N N (13)

 

,  ,  , 2 ,  ,   ,  , 0, X X Y Y X XX XY XY Y YY W G XX YY

Q Q N W N W N W K W K W W (14)

,  ,  0, X X XY Y X

M M Q (15)

,  ,  0, XY X Y Y Y

M M Q (16) The axial forces NX,N NY, XY, bending moments MX,M MY, XY and shear forces Q Q are X, Y related to strain components by

   

0 0

0

   

   

   

    

       

       

       

T

X X X

T

Y Y Y

XY XY XY

N N

N J C N

N

 

 

 

(5)

   

0 0

0

   

   

   

    

       

       

       

T

X X X

T

Y Y Y

XY XY XY

M M

M C L M

M

 

 

 

(18)

 

   

   

   

X XZ

Y YZ

Q

K P Q

 (19)

where shear correction factor K 5 / 6 The stiffness elements of the plate are defined as

      

2

, , 1, , , , 1, 2,3

 L k

k

Z N

k

ij ij ij ij

k Z

J C L B Z Z dZ i j

        

1

( ) 11

1

, , 1, , , 1,

 

 

Lk  Lk

k k

Z Z

N N

k T T k k

ij ij

k Z k Z

P Q dZ i j N M QT Z dZ

(20)

For using later, the reverse relations are obtained from Eq (17)

0 12 22 22 11 12 12 12 22 22 12 12 22

, ,

0 12 11 11 22 12 12 12 11 11 12 12 11

, ,

0 33 33

, ,

33 33 33

  

    

    

  

    

    

  

T

X Y X X X Y Y

T

Y X Y Y Y X X

XY

XY X Y Y X

J J J C J C C J C J J J

N N N

J J J C C J C J C J J J

N N N

C C

N

J J J

  

  

  

(21)

where  J122 J J22 11.

The stress function F X Y , - the solution of both equations (12) and (13) is introduced as

, , , , , .

   

X YY Y XX XY XY

N F N F N F (22) By substituting Eqs (21), (18) and (19) into Eqs (14)-(16) Eqs (14)-(16) can be rewritten

   

   

   

* *

44 , , 44 , 55 , , 55 ,

* *

, , , , , ,

*

, , , , ,

2

0,

    

   

     

XX XX X X YY YY Y Y

YY XX XX XY XY XY

XX YY YY W G XX YY

KP W W KP KP W W KP

F W W F W W

F W W K W K W W

 

(23)

 

21 , 22 , 23 , 24 , 25 ,

*

44 , , 44 0,

   

   

XXX XYY X XX Y XY X YY

X X X

S F S F S S S

KP W W KP

  

 (24)

 

31 , 32 , 33 , 34 , 35 ,

*

55 , , 55 0,

   

   

XXY YYY X XY Y XX Y YY

Y Y Y

S F S F S S S

KP W W KP

  

 (25)

(6)

   

66

12 11 12 11 22 11 12 12

21 22

33

22 11 12 12 11 12 11 11 12 12

23 11

,

    

   

 

  

 

C

J C C J J C C J

S S

J

J C J C C C J C J C

S L

   

   

12 22 22 12 11 11 22 12 12 12 33 66 33 66

24 66 12 25 66

33 33

66 12 12 11 22 12 22 22 12

31 32

33

22 11 12 12 12 12 11 11 12 22 33 66

33 12 66

33 33 66

34 66 35

33

,

,

,

 

      

 

     

   

 

    

 

 

C J C J C J C C J C C C C C

S L L S L

J J

C J C J C J C J C

S S

J

J C J C C C J C J C

C C

S L L

J C C

S L S

J

 12 22 22 12 12  11 22 12 12 22 22

 

  

 

C J C J C J C C J C

L

The strains are related in the compatibility equation

X YY0, Y XX0, XY XY0 ,  W,XY 2W W,XX ,YY 2W W,XY ,*XYW W,XX ,YY* W W,YY ,*XX (26) Set Eqs (21) and (22) into the deformation compatibility equation (26), we obtain

 

33

11 12 22 22 11 12 12

, , , ,

33 33

33

12 22 22 12 12 11 11 12 11 22 12 12

, , ,

33

2 * *

, , , , , , , , ,

2

2

    

       

       

 

  

    

    

    

XXXX XXYY YYYY X XYY

Y YYY X XXX Y XXY

XY XX YY XY XY XX YY YY XX

C

J J J J C J C

F F F

J J

C

C J C J C J C J J C C J

J

W W W W W W W W W

  

*

(27)

The system of fours Eqs (23) - (25) and (27) combined with boundary conditions and initial conditions can be used for posbuckling of the FG multilayer GPLRC plate

3.2 Solution procedure

Depending on the in-plane behavior at the edges is not able to move or be moved, two boundary conditions, labeled Case and Case will be considered [19]:

Case Four edges of the plate are simply supported and freely movable (FM) The associated boundary conditions are

0

0, 0, 0, 0, 0, ,

0, = 0, 0, 0, 0,

     

    

XY Y X X X

XY X Y Y Y

W N M N N at X a

W N M N N at Y b

 (28)

Case Four edges of the plate are simply supported and immovable (IM) In this case, boundary conditions are

0

0, 0, 0, 0, ,

W 0, 0, 0, 0,

     

     

Y X X X

X Y Y Y

W U M N N at X a

V M N N at Y b

(7)

where NX0,NY0 are the forces acting on the edges of the plate that can be moved (FM), and these forces

are the jets when the edges are immovable in the plane of the plate (IM)

The approximate solutions of the system of Eqs (23)-(25) and (27) satisfying the boundary conditions (28), (29) can be written as

 

 

 

0

X, Y W sin sin ,

X, Y cos sin ,

X, Y sin os ,

    

X X

Y Y

W X Y

X Y

Xc Y

 

  

  

(30)

  2

1 0

1 1

X, Y cos 2 cos 2 ,

2 X 2 Y

FAXAYN YN X (31)

where m , n

a b

 

   , m n, 1,2, are the natural numbers of half waves in the corresponding direction X Y, , and W, X, Y - the amplitudes which are functions dependent on time The coefficients A ii  1 2 are determined by substitution of Eqs (30, 31) into Eq (27) as

2

0

1 1W , 2W , 3 x y

Af Af A  ff  (32)

where

   

2

1 0 2 0

11 22

3 2

11 33 12 12 33 11 12 33 12 22 33 11 33

3 2 2

11 33 12 33 22 33

2 3

11 33 22 12 33 12 12 33 22 22 12

4

3

1

, ,

32

2

32

 

     

  

  

  

    

J J

J J C J J C J J C J J C C

J J J J J J

J J C J J C

f W W h f W W h

f

J J C J J C C

f

   

 

       

     

        3

4 2 2

11 332 12 33 22 33

J J J J J J

     

Substituting expressions (30)-(32) into Eqs (23)-(25), and then applying Galerkin method we obtain

  

      

4 2 2

11 12 13

14 15

0 0

6 0 2 0

3

    

       

 

 

x y

y y x

x

l mn h l l

l W h l W h l

W b m N a n N

W W h W

W

h

  

 (33)

   

21   x 22 y 23 02  24 0 0

l l l W Wh l Wh (34)

   

31   x 32 y 33 02  34 0 0

l l l W Wh l Wh (35)

where

 

4 2 2 2 2

11 55 44

2 2 2

w

3

3 3

   

 

G G

T

l mn b m K a n K a n P K b m P K

a b n mC a b K n m

 

l12 3b23m P Kan l2 44 ,13 3a n2 23P Kbm l55 ,14  324f m n3 2

(8)

2 3 3 2 2

21 22 24

2 3 3 3

21 21

2

22 25

2 2

23 21

2

1 24 44

3 3

3 3

256 ,

 

 

  

b m S f n S m n f a S m n a b

l b m S f n S m n f a a n S

l l

S f m b l b mP Ka n

  

  

 

2 2 3 2 3

31 33 31 32

3 2 3 2 3

32 34 35 31 32 55

2 2

33 32 34 55

3 3

3 3 3 ,

6 ,

25

  

    

  

l n m S b a n m S f b a n S f m

l b m S a n S mb n m S f b a n S f m a b Km

l a n S f l a n

P P Kmb

  

   

 

3.3 Mechanical postbuckling analysis

Consider the FG multilayer GPLRC plate hinges on four edges which are simply supported and freely movable (corresponding to case 1, all edges FM) Assume that the FG multilayer GPLRC plate is loaded under uniform compressive forces FX and FY (Pascal) on the edges X=0, a, and Y= 0, b, in which

0 ,

X X Y Y

N  F h N  F h (36) Substituting Eq (36) into Eqs (33)-(35) leads to the system of differential equations for studying the postbuckling of the plate

 

     

 

     

 

   

22 34 24 32 12 21 34 24 31 13 11

21 32 22 31 22 31 21 32

2 22 33 23 32 12 21 33 23 31 13

21 32 22 31 22 31 21 32

22 33 23 32 14 21 33 23 31 21

0

3

0

2 31

l l l l l l l l l l W

l

l l l l l l l l h

l l l l l l l l l l W

l l l l l l l l h

l l l l l l l l l l

l l

W

W

l l

 

   

 

   

 

 

   

   

 

 

 

 

 

  

 

   

   

5 22 34 24 32 14 21 34 24 31 15

4

2

0

22 31 21 32 21 32 22 31 22 31 21 32

2 2

16 0 X Y

l l l l l l l l l l

W W

l l l l l l l l l l l l

l W Whmnh b m F a n F

     

 

      

   

   

 

 

(37)

3.4 Thermal postbuckling analysis

Consider the FG multilayer GPLRC plate with all edges which are simply supported and immovable (corresponding to case 2, all edges IM) under thermal load The condition expressing the immovability on the edges, U = (on X = 0, a) and V = (on Y = 0, b), is satisfied in an average sense as

, ,

0 0

0,

 

 

b a a b

X Y

U dXdY V dXdY (38)

From Eqs (9) and (21) of which mentioned relations (22) we obtain the following expressions

   

12 22 22 11 12 12 12 22 22 12

, , ,

2 12 22

,

12 11 11 22 12 12 12 11 11 12

, , ,

2 12 11

,

1

1

 

   

   

 

 

   

   

 

X Y X X X Y Y

T

X

Y X Y Y Y X X

T

Y

J J J C J C C J C J

U N N

J J

N W

J J J C C J C J C J

V N N

J J

N W

 

 

(9)

Substituting Eqs (30)-(32) into Eqs (39), and substituting the expression obtained into Eqs (38) we have

2

0 11 12 13

x X Y T

Nn    n n WN

2

0 21 22 23

y X Y T

Nn  n  n WN (40)

 

2 2 2 11 22 12

11 2 2 2

11 22 12 11 11 12 11

4   

   

   

J a n f J a n f n

a b mn J J J C ab m J C ab

J

J m

 

 

2 2 2

11 22 12

12 2 2 2

11 22 12 11 22 12 12 12

4   

   

   

a n f J a n f

n J

a b mn J J J J a bn J C a nb

J J C       

2 3 3

12 11

13 2

11 22 12

8

 

 

J a n m J b m n

n

ab mn J J J

 

 

2 2 2

12 12 12

21 2 2 2

11 22 12 22 11 22 11 12

4   

  

   

b J m f b J

J J C

C am n

a b mn J J J b m f J J ab m

 

 

2 2 2 12 22 12

22 2 2 2

11 22 12 22 11 22 11 22

4  

            

nJ C a b b m f

n

a b mn J J

J

J J J b m f J J C a bn

 

 

 

3 2 3

12 22

23 2

11 22 12

8

 

 

m b nJ J a n m

n

a bmn J J J

 

Substituting (40) into Eqs (33)-(35) leads to the basic equations used to investigate the postbuckling of the plates in the case all IM edges

   

   

2

1

2

2

0

4 0

2 4

0 3          T W

p p W p W

W p

p W W h

W h

b m a n N

W h mn mn

     (41) where                  

2

22 34 24 32 12 21 34 24 31 13 11

21 32 22 31 22 31 21 32

2

22 34 24 32 14

2

21 32 22 31

2

21 34 24 31 15

22 31 21 32

2

4

21 11

2 4

22

2 33 23 3 2 3 , ,                   

l l l l l l l l l l

l

l l l l l l l l

l l l l mn mn l

p

l l l l

l l l l mn mn l

l l l l l l l l

p p

n a n n b m

n a n n b m

n                    2 14 21 32 22 31

2

21 33 23 31 15

22 31 21 32

22 33 23 32 12 21 33 23 31 13

2

4 16

2

2 4

1 11

1 32 22 31 22 31

2 4

22 12

2 4

21

23

2 , 3 3 3 ,                 

a n n b m

n a

mn mn l

l l l l

l l l l mn mn l

l l l l

l l l l l l l l l l

p mn mn l

l l

n n b m

n a n n b m p

l l l l l l

 

 

(10)

4 Numerical example and discussion

The plate (a×b×h = 0.45m×0,45m×0.045m) is reinforced with GPLs with dimentions

2.5 , 1.5 , h 15

GPL GPL GPL

a  m b  mnm The

material properties of epoxy and GPL are presented in Table In addition, GPL weight fraction is 0.5% and the total number of layers

10

L

N

Table Material properties of the epoxy and GPLs [9] Material properties Epoxy GPL Young’s modulus (GPa) 3.0 1010 Density (kg.m-3) 1200 1062.5

Poisson’s ratio 0.34 0.186 Thermal expansion coefficient 60

 

10 / K

 5.0

4.1 Validation of the present formulation

In table 1, the critical buckling load of FG multilayer GPLRC plate under biaxial compreession (kN) are also compared with those presented in Song et al [9], in which the authors used a two step perturbation technique [20] to solve differential equations

According to Table 2, the errors of critical buckling load with Ref [9] are very small, indicating that the approach of this study is highly reliable

Table Comparison of critical buckling load of FG multilayer GPLRC plate under biaxial compreession (kN) WGPL

Pure epoxy 0.2% 0.4% 0.6% 0.8% 1% U-GPLRC

Present 2132.3 3547.6 4962.3 6376.4 7789.8 9202.7 Ref [9] 2132.3 3550.9 4968.9 6386.3 7803.1 9219.2 % different 0.0929 0.1328 0.155 0.1704 0.179 X-GPLRC

Present 2132.3 4181.8 6224.7 8265.0 10304.0 12341.0 Ref [9] 2132.3 4081.3 6025.1 7966.3 9905.7 11843.6 % different 2.462 3.313 3.75 4.021 4.2

4.2 Postbuckling

Postbuckling curves of the FG multilayer GPLRC plate with different GPL distribution patterns is shown in figures and It can be seen that the postbucking strength of pattern X is the best, next is pattern U and the least pattern O

Figure Postbuckling curves of the FG multilayer GPLRC plate under uniaxial compressive load: Effect

of GPL distribution pattern

Figure Postbuckling curves of the FG multilayer GPLRC plate under thermal load: Effect of GPL

distribution pattern

0 0.5 1.5

0 100 200 300 400 500 600

W0/h

T

(K)

Perfect (=0)

Imperfect (=0.1)

WGPL=0.5%, KG=0, KW=0

(2) 1: U-GPLRC 2: X-GPLRC 3: O-GPLRC

(11)

Figure Postbuckling curves of the FG multilayer GPLRC plate under uniaxial compressive load: Effect

of imperfection

Figure Postbuckling curves of the FG multilayer GPLRC plate under thermal load: Effect of

imperfection Figures and show effects of imperfection

on buckling and postbuckling curves of the FG multilayer X-GPLRC plate under uniaxial compressive and thermal loads In postbuckling period, those suggest us that the imperfect properties have affected actively on the loading ability in the limit of large enough W0/h In other

words, the loading ability increases with µ

Figures and shows the effects of GPL weight fraction WGPL on the postbuckling

behavior of the FG multilayer X-GPLRC plate under uniaxial compressive and thermal loads As expected, the postbucking strength of the FG multilayer X-GPLRC plate increased with WGPL,

i.e., with the volume content of GPL in the plate

Figure Postbuckling curves of the FG multilayer GPLRC plate under uniaxial compressive load: Effect

of GPL weight fraction

Figure Postbuckling curves of the FG multilayer GPLRC plate under thermal load: Effect of GPL

weight fraction

0 0.5 1.5

0 0.2 0.4 0.6 0.8

W

0/h

Fx

(GPa)

=0

=0.1

=0.3

=0.5

X-GPLRC: W

GPL=0.5%, KG=0, KW=0

0 0.5 1.5

0 100 200 300 400 500 600 700 800

W 0/h

T

(K)

=0

=0.1

=0.3

=0.5

X-GPLRC: WGPL=0.5%, KG=0, KW=0

0 0.5 1.5

0 0.2 0.4 0.6 0.8 1.2 1.4

W 0/h

Fx

(GPa)

Perfect (=0.0) Imperfect (=0.1)

X-GPLRC, K

G=0, KW=0 1: W

GPL=0 (Pure epoxy) 2: W

GPL=0.3% 3: WGPL=0.5% 4: W

GPL=0.7% 5: W

GPL=1%

0 0.5 1.5

0 100 200 300 400 500 600

W0/h

T

(K)

Perfect (=0) Imperfect (=0.1)

X-GPLRC, KG=0, KW=0 1: WGPL=0 (Pure epoxy)

2: WGPL=0.3 % 3: WGPL=1 %

(12)

Figures and 10 illutrates the effects of GPL width-to thickness ratio bGPL/tGPL and

length-to-width ratio aGPL/bGPL on the postbuckling

behavior of the FG multilayer O-GPLRC plates Figure demonstrates the increased uniaxial compressive postbuckling load – carrying capability of FG multilayer O-GPLRC plates when bGPL/tGPL increases Figure 10 presents the

decreased uniaxial compressive postbuckling load–carrying capability of FG multilayer O-GPLRC plates when aGPL/bGPL increases

Figure Postbuckling curves of the FG multilayer GPLRC plate under uniaxial compressive load: Effect of GPL

length-to-thickness ratio

Figure 10 Postbuckling curves of the FG multilayer GPLRC plate under uniaxial compressive load: Effect of GPL length-to-width

ratio

Figure 11 Postbuckling curves of the FG multilayer GPLRC plate under uniaxial compressive load: Effect of elastic foundations

Figure 11 shows the effects of the elastic foundations on the postbuckling behavior of FG multilayer GPLRC plate Elastic foundations are recognized to have strong impact, as demonstrated by curve (KW = 0, KG = 0) and

(KW=0.1Gpa/m, KG = 0.01Gpa.m), which show

that the ability of sustaining compression load will increase if the effects of elastic foundations enhance from (KW=0, KG = 0) to (KW=0.1Gpa/m,

KG = 0.01Gpa.m)

5 Conclusions

The postbuckling behavior of FG multilayer GPLRC plate under mechanical and thermal loads is investigated based on the FSDT Some remarkable results are listed following

- The postbucking strength of pattern X is the best, next is pattern U and the least pattern O

- Elastic foundation models have a positive influence on postbuckling curves, specifically making postbucking strength decrease

- Increasing the values of GPL weight fraction makes postbucking strength capacity better

- Effect of geometry and dimension of GPL is also discussed and demonstrated through illustrative numerical examples

Acknowledgement

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 107.02-2018.04 The authors are grateful for this support

0 0.5 1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

W

0/h

Fx

(GPa)

Perfect (=0.0) Imperfect (=0.1)

W

GPL=0.5%, KG=0, KW=0

1: b

GPL/tGPL=10

2: b

GPL/tGPL=10

3: b

GPL/tGPL=10

4: b

GPL/tGPL=10

(1) (2) (4)

(3)

0 0.5 1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

W

0/h

Fx

(GPa)

Perfect (=0.0) Imperfect (=0.1) 1: a

GPL/bGPL=1

2: a

GPL/bGPL=10

3: a

GPL/bGPL=20

(1)

O-GPLRC: W

GPL=0.5%, KG=0, KW=0

(3) (2)

0 0.5 1.5

0 0.2 0.4 0.6 0.8 1.2 1.4

W0/h

Fx

(GPa)

Perfect (=0.0) Imperfect (=0.1)

O-GPLRC, WGPL=0.5% K

W=0.1GPa/m,

K

G=0.01GPa.m

KW=0,KG=0 K

(13)

References

[1] K.S Novoselov, A.K Geim, S.V Morozov, D Jiang, Y Zhang, S.V Dubonos, I.V Grigorieva, A Firsov, Electric filed effect in atomically thin carbon films, Science 306 (2004) 666–669 http://doi.org/ 10.1126/science.1102896 [2] K.S Novoselov, D Jiang, F Schedin, T.J Booth,

V.V Khotkevich, S.V Morozov, A.K Geim, Two-dimensional atomic crystals, Proceedings of the National Academy of Sciences of the United States of America 102 (2005) 10451–10453 https://doi.org/10.1073/pnas.0502848102 [3] C.D Reddy, S Rajendran, K.M Liew,

Equilibrium configuration and continuum elastic properties of finite sized graphene, Nanotechnology 17 (2006) 864-870 https://doi org/10.1088/0957-4484/17/3/042

[4] C Lee, X.D Wei, J.W Kysar, J Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (2008) 385–388 http://doi.org/10.1126/ science.1157996

[5] F Scarpa, S Adhikari, A.S Phani, Effective elastic mechanical properties of single layer graphene sheets, Nanotechnology 20 (2009) 065709 https://doi.org/10.1088/0957-4484/20/6/ 065709

[6] Y.X Xu, W.J Hong, H Bai, C Li, G.Q Shi, Strong and ductile poly(vinylalcohol)/graphene oxide composite films with a layered structure, Carbon 47 (2009) 3538–3543 https://doi.org/ 10.1016/j.carbon.2009.08.022

[7] J.R Potts, D.R Dreyer, C.W Bielawski, R.S Ruoff, Graphene-based polymer nanocomposites, Polymer 52 (2011) 5-25 https://doi.org/10.1016/j polymer.2010.11.042

[8] T.K Das, S Prusty, Graphene-based polymer composites and their applications, Polymer-Plastics Technology and Engineering 52 (2013) 319-331 https://doi.org/10.1080/03602559.2012 751410

[9] M Song, J Yang, S Kitipornchai, W Zhud, Buckling and postbuckling of biaxially compressed functionally graded multilayer graphene nanoplatelet-reinforced polymer composite plates, International Journal of Mechanical Sciences 131–132 (2017) 345–355 https://doi.org/10.1016/j.ijmecsci.2017.07.017 [10] H.S Shen, Y Xiang, F Lin, D Hui, Buckling and

postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments, Composites Part B 119 (2017) 67-78 https://doi.org/10.1016/j.compositesb.2017 03.020

[11] H Wu, S Kitipornchai, J Yang, Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates, Materials and Design 132 (2017) 430–441 https://doi.org/10 1016/j.matdes.2017.07.025

[12] J Yang, H Wu, S Kitipornchai, Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams, Composite Structures 161 (2017) 111–118 https://doi.org/10.1016/j.compstruct.2016.11.048 [13] H.S Shen, Y Xiang, Y Fan, Postbuckling of

functionally graded graphene-reinforced composite laminated cylindrical panels under axial compression in thermal environments, International Journal of Mechanical Sciences 135 (2018) 398–409 https://doi.org/10.1016/j.ijme csci.2017.11.031

[14] M.D Rasool, B Kamran, Stability analysis of multifunctional smart sandwich plates with graphene nanocomposite and porous layers, International Journal of Mechanical Sciences 167 (2019) 105283 https://doi.org/10.1016/j.ijmecs ci.2019.105283

[15] J.J Mao, W Zhang, Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces, Composite Structures 216 (2019) 392–405 https://doi.org/10.1016/j compstruct.2019.02.095

[16] P.H Cong, N.D Duc, New approach to investigate nonlinear dynamic response and vibration of functionally graded multilayer graphene nanocomposite plate on viscoelastic Pasternak medium in thermal environment, Acta Mechanica 229 (2018) 651-3670 https://doi.org/ 10.1007/s00707-018-2178-3

[17] N.D Duc, N.D Lam, T.Q Quan, P.M Quang, N.V Quyen, Nonlinear post-buckling and vibration of 2D penta-graphene composite plates, Acta Mechanica (2019), https://doi.org/10 1007/s00707-019-02546-0

[18] N.D Duc, P.T Lam, N.V Quyen, V.D Quang, Nonlinear Dynamic Response and Vibration of 2D Penta-graphene Composite Plates Resting on Elastic Foundation in Thermal Environments, VNU Journal of Science: Mathematics-Physics 35(3) (2019) 13-29 https:// doi.org/10.25073/2588-1124/vnumap 4371 [19] J.N Reddy, Mechanics of laminated composite

plates and shells; theory and analysis, Boca Raton: CRC Press, 2004

https://doi.org/10.1073/pnas.0502848102. https://doi.org/10.1088/0957-4484/20/6/ 065709. https://doi.org/ 10.1016/j.carbon.2009.08.022. https://doi.org/10.1016/j polymer.2010.11.042. https://doi.org/10.1080/03602559.2012 751410. https://doi.org/10.1016/j.ijmecsci.2017.07.017. https://doi.org/10.1016/j.compositesb.2017 03.020. https://doi.org/10 1016/j.matdes.2017.07.025. https://doi.org/10.1016/j.compstruct.2016.11.048. https://doi.org/10.1016/j.ijme csci.2017.11.031. https://doi.org/10.1016/j.ijmecs ci.2019.105283. https://doi.org/10.1016/j compstruct.2019.02.095 https://doi.org/ https://doi.org/10 1007/s00707-019-02546-0.

Ngày đăng: 03/02/2021, 03:25