THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 100 |
Dung lượng | 3,45 MB |
Nội dung
Ngày đăng: 28/01/2021, 15:22
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết |
---|---|---|
[1] R. Agrawal, C. Faloutsos, A. Swami, Efficient similarity search in sequence databases, in Proceedings of the 4 th Internaltional Conference on Foundations of Data Organization and Algorithms (FODO ’93), Chicago, Illinois, USA, October 13-15, 1993, pp. 69-84 | Khác | |
[2] S. Babu, J.Widom, Continuous queries over data streams, in ACMSIGMOD Record, Volume 30, Issue 3, September 2001, pp. 109-120 | Khác | |
[4] N. Beckmann, H.P. Kriegel, R. Schneider, B. Seeger, The R*-Tree: an efficient and robust access method for points and rectangles,in Proceedings of the ACMSIGMOD, Atlantic City, New Jersey, USA, May 23-25, 1990, pp.322-331 | Khác | |
[5] D. Berndt, J. Clifford, Using dynamic time warping to find patterns in time series, in Proceedings of AAAI Workshop on Knowledge Discovery in Databases (KDD94), Seattle, Washington, USA, pp. 359-370 | Khác | |
[6] K. Chan, J. Clifford, Efficient time series matching by wavelets, in Proceedings of 15 th IEEE International Conference on Data Engineering (ICDE1999), March 23-26, 1999, pp. 126-133 | Khác | |
[7] S. Chandrasekaran, M. J. Franklin, Streaming queries over streaming data, in Proceedings of the 28 th International Conference on Very Large Database (VLDB 2002), Hong Khong, China, August 20-23, 2002, pp. 203-214 | Khác | |
[8] Q. Chen, L. Chen, X. Lian, Y. Liu, Indexable PLA for Efficient Similarity Search, Proceedings of the 33 rd international conference on Very large databases, September 23-27, Vienna, Austria | Khác | |
[9] L. Gao, X. S. Wang, Continually evaluating similarity-based pattern queries on a streaming time series, in Proceeding of the 2002 ACM SIGMOD | Khác | |
[10] A. Guttman, R-tree: A dynamic index structure for spatial searching, in Proceedings of the 1984 ACM SIGMOD International conference on Management of Data (SIGMOD ’84), Boston, Massachusetts, USA, June 18-21, 1984, pp. 47-57 | Khác | |
[11] J. Han, M. Kamber, Mining stream, time-series, and sequence data, in Data Mining: concepts and Techniques, Second Edition, Morgan Kaufmann, 2006, pp. 467-534 | Khác | |
[12] E. Keogh, A decade of progress in indexing and mining large timeseries databases, in Proceedings of the 32 nd international conference on Very large databases (VLDB ‘2006), Seoul, Korea, September 12-15, 2006, pp. 1268-1268 | Khác | |
[13] E. Keogh, M. J. Pazzani, An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback, in Proceedings of the 4 th International Conference on Knowledge Discovery and Data Mining, New York, USA, Aug 27-31, 1998, pp. 239-241 | Khác | |
[14] E. Keogh, S. Chu, D. Hart, M. J. Pazzani, An online algorithm for segmenting time series, in Proceeding of the IEEE International Conference on Data Mining (ICDM ’01), San Jose, California, USA, 29 Nov 2001 – 02 Dec 2001, pp. 289- 296 | Khác | |
[15] E. Keogh, K. Chakrabarti, M. Pazzani, S. Mehrotra, Dimensionality reduction for fast similarity search in large time series databases, in Knowledge and Information Systems, vol. 3, no. 3, 2000, pp. 263-286 | Khác | |
[16] E. Keogh, K. Chakrabarti, M. Pazzani, S. Mehrotra, Locally adaptive dimensionality reduction for indexing large time series databases, in Proceedings of the 2001 ACM SIGMOD Conference on Management of Data, May 21-24, 2001, pp. 151-162 | Khác |
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN