1. Trang chủ
  2. » Luận Văn - Báo Cáo

Tìm kiếm tương tự trên dữ liệu chuỗi thời gian dạng luồng sử dụng phép biến đổi pla và skyline index

100 13 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 100
Dung lượng 3,45 MB

Nội dung

Ngày đăng: 28/01/2021, 15:22

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] R. Agrawal, C. Faloutsos, A. Swami, Efficient similarity search in sequence databases, in Proceedings of the 4 th Internaltional Conference on Foundations of Data Organization and Algorithms (FODO ’93), Chicago, Illinois, USA, October 13-15, 1993, pp. 69-84 Khác
[2] S. Babu, J.Widom, Continuous queries over data streams, in ACMSIGMOD Record, Volume 30, Issue 3, September 2001, pp. 109-120 Khác
[4] N. Beckmann, H.P. Kriegel, R. Schneider, B. Seeger, The R*-Tree: an efficient and robust access method for points and rectangles,in Proceedings of the ACMSIGMOD, Atlantic City, New Jersey, USA, May 23-25, 1990, pp.322-331 Khác
[5] D. Berndt, J. Clifford, Using dynamic time warping to find patterns in time series, in Proceedings of AAAI Workshop on Knowledge Discovery in Databases (KDD94), Seattle, Washington, USA, pp. 359-370 Khác
[6] K. Chan, J. Clifford, Efficient time series matching by wavelets, in Proceedings of 15 th IEEE International Conference on Data Engineering (ICDE1999), March 23-26, 1999, pp. 126-133 Khác
[7] S. Chandrasekaran, M. J. Franklin, Streaming queries over streaming data, in Proceedings of the 28 th International Conference on Very Large Database (VLDB 2002), Hong Khong, China, August 20-23, 2002, pp. 203-214 Khác
[8] Q. Chen, L. Chen, X. Lian, Y. Liu, Indexable PLA for Efficient Similarity Search, Proceedings of the 33 rd international conference on Very large databases, September 23-27, Vienna, Austria Khác
[9] L. Gao, X. S. Wang, Continually evaluating similarity-based pattern queries on a streaming time series, in Proceeding of the 2002 ACM SIGMOD Khác
[10] A. Guttman, R-tree: A dynamic index structure for spatial searching, in Proceedings of the 1984 ACM SIGMOD International conference on Management of Data (SIGMOD ’84), Boston, Massachusetts, USA, June 18-21, 1984, pp. 47-57 Khác
[11] J. Han, M. Kamber, Mining stream, time-series, and sequence data, in Data Mining: concepts and Techniques, Second Edition, Morgan Kaufmann, 2006, pp. 467-534 Khác
[12] E. Keogh, A decade of progress in indexing and mining large timeseries databases, in Proceedings of the 32 nd international conference on Very large databases (VLDB ‘2006), Seoul, Korea, September 12-15, 2006, pp. 1268-1268 Khác
[13] E. Keogh, M. J. Pazzani, An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback, in Proceedings of the 4 th International Conference on Knowledge Discovery and Data Mining, New York, USA, Aug 27-31, 1998, pp. 239-241 Khác
[14] E. Keogh, S. Chu, D. Hart, M. J. Pazzani, An online algorithm for segmenting time series, in Proceeding of the IEEE International Conference on Data Mining (ICDM ’01), San Jose, California, USA, 29 Nov 2001 – 02 Dec 2001, pp. 289- 296 Khác
[15] E. Keogh, K. Chakrabarti, M. Pazzani, S. Mehrotra, Dimensionality reduction for fast similarity search in large time series databases, in Knowledge and Information Systems, vol. 3, no. 3, 2000, pp. 263-286 Khác
[16] E. Keogh, K. Chakrabarti, M. Pazzani, S. Mehrotra, Locally adaptive dimensionality reduction for indexing large time series databases, in Proceedings of the 2001 ACM SIGMOD Conference on Management of Data, May 21-24, 2001, pp. 151-162 Khác

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN