1. Trang chủ
  2. » Luận Văn - Báo Cáo

Khai phá luật trên chuỗi thời gian dựa trên tỷ số thay đổi và giải thuật fp growth

74 11 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 74
Dung lượng 2,01 MB

Nội dung

Ngày đăng: 28/01/2021, 15:21

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[20] J. Han, M. Kamber, “Data Mining: Concepts and Techniques”, Morgan Kaufmann, San Francisco, 2006 Sách, tạp chí
Tiêu đề: Data Mining: Concepts and Techniques
[21] NIZAR R. MABROUKEH and C. I. EZEIFE, "A Taxonomy of Sequential Pattern Mining Algorithms", ACM Computing Surveys, Vol. 43, No. 1, Article 3, Publication date:November 2010 Sách, tạp chí
Tiêu đề: A Taxonomy of Sequential Pattern Mining Algorithms
[22] L. Sacchi, C. Larizza, C. Combi, R. Bellazzi, “Data mining with temporal abstractions: learning rules from time series”, Data mining and Knowledge Discovery journal, pages 217- 247, 2007 Sách, tạp chí
Tiêu đề: Data mining with temporal abstractions: learning rules from time series
[24] M.L. Hetland and P. Sổtrom, "Evolutionary Rule Mining in Time Series Databases", presented at Machine Learning, 2005, pp.107-125 Sách, tạp chí
Tiêu đề: Evolutionary Rule Mining in Time Series Databases
[25] P. Cotofrei and K. Stoffel, "Classification Rules + Time = Temporal Rules", in Proc. International Conference on Computational Science (1), 2002, pp.572-581 Sách, tạp chí
Tiêu đề: Classification Rules + Time = Temporal Rules
[1] AYRES, J., FLANNICK, J.,GEHRKE, J., AND YIU, T. 2002. Sequential pattern mining using a bitmap representation. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 429–435 Khác
[2] A. Hyvarinen. Survey on independent component analysis. Neural Computing Surveys, 2:9-128,1999 Khác
[3] Agrawal, R.,Imielinski,T.,Swami,A.Mining association rules between sets of items in large databases. In: Proceedings of the ACM SIGMOD Conferenceon Management of Data, pp.207–216,1993 Khác
[4] Berndt, D. and Clifford J. 1994, Using dynamic time warping to find patterns in time series. In Proceedings of AAAI Workshop on Knowledge Discovery in Databases, KDD-94, Seattle, Washington, USA, pp. 359-370 Khác
[5] AGRAWAL, R. AND SRIKANT, R. 1995. Mining sequential patterns. In Proceedings of the 11th Conference on Data Engineering (ICDE’95), 3–14 Khác
[6] ANTUNES, C. AND OLIVEIRA, A. L. 2004. Sequential pattern mining algorithms: Trade-offs between speed and memory. In Proceedings of the Workshop on Mining Graphs, Trees and Sequences (MGTSECML/PKDD ’04) Khác
[7] CHIU, D.-Y., WU, Y.-H., AND CHEN, A. L. P. 2004. An efficient algorithm for mining frequent sequences by a new strategy without support counting. In Proceedings of the 20th International Conference on Data Engineering. 375–386 Khác
[8] DUNHAM, M. H. 2003. Data Mining: Introductory and Advanced Topics. Prentice Hall, Englewood Cliffs,NJ Khác
[9] Das, G., Lin,K.I., Mannila,H., Renganathan,G., Smyth,P., 1998. Rule discovery from time series. In: Proceedings of the Fourth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.16–22 Khác
[10] EL-SAYED, M., RUIZ, C., AND RUNDENSTEINER, E. A. 2004. FS-Miner: Efficient and incremental mining of frequent sequence patterns in web logs. In Proceedings of the 6th Annual ACM International Workshop on Web Information and Data Management. ACM, New York, 128–135 Khác
[11] HUANG, J.-W., TSENG, C.-Y., OU, J.-C., AND CHEN, M.-S. 2006. On progressive sequential pattern mining. In Proceedings of the 15th ACM International Conference on Information and Knowledge Management. ACM, New York, 850–851 Khác
[12] TANASA, D. 2005. Web usage mining: contributions to intersites logs preprocessing and sequential pattern extraction with low support. Ph.D. dissertation, Universit´e De Nice Sophia-Antipolis Khác
[14] PEI, J.,HAN, J.,MORTAZAVI-ASL, B., AND PINTO, H. 2001. PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth. In Proceedings of the International Conference on Data Engineering. 215–224 Khác
[15] Tanaka, Y. & Uehara, K. Discover Motifs in Multi Dimensional Time-Series Using the Principal Component Analysis and the MDL Principle. In proceedings of the 3rd International Conference on Machine Learning and Data Mining in Pattern Recognition, pp.252-265, 2003 Khác
[16] PEI, J.,HAN, J.,MORTAZAVI-ASL, B., AND ZHU, H. 2000. Mining access patterns efficiently from web logs. In Knowledge Discovery and Data Mining. Current Issues and New Applications. Lecture Notes Computer Science, vol. 1805, Springer, Berlin, 396–407 Khác

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w