1. Trang chủ
  2. » Luận Văn - Báo Cáo

Kết hợp giải thuật gom cụm dựa vào độ dốc tích lũy có trọng số và k means để gom cụm dữ liệu chuỗi thời gian

85 19 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 85
Dung lượng 1,37 MB

Nội dung

Ngày đăng: 27/01/2021, 09:28

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] E. Keogh, “A Tutorial on Indexing and Mining Time Series Data,” In The IEEE International Conference on Data Mining (ICDM 2001), San Jose, USA, November 29, 2001 Sách, tạp chí
Tiêu đề: A Tutorial on Indexing and Mining Time Series Data,” In "The IEEE International Conference on Data Mining (ICDM 2001)
[2] G. Das, K. Lin, H. Mannila, G. Reganathan, and P. Smyth, “Rule Discovery from Time Series,” Proc. of the 4th Int'l Conference on Knowledge Discovery and Data Mining, pp. 16-22, New York, NY, Aug 27-31, 1998 Sách, tạp chí
Tiêu đề: Rule Discovery from Time Series,” "Proc. of the 4th Int'l Conference on Knowledge Discovery and Data Mining
[3] P. Cotofrei and K. Stoffel, “Classification Rules + Time = Temporal Rules,” Proc. of the 2002 Int'l Conference on Computational Science, pp. 572-581, Amsterdam, Netherlands, Apr 21-24, 2002 Sách, tạp chí
Tiêu đề: Classification Rules + Time = Temporal Rules,” "Proc. of the 2002 Int'l Conference on Computational Science
[4] E. Keogh and S. Kasetty, “On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration,” Proc. of the 8th ACM SIGKDD Int'l Conference on Knowledge Discovery and Data Mining, Edmonton, pp. 102- 111, Alberta, Canada, July 23-26, 2002 Sách, tạp chí
Tiêu đề: On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration,” "Proc. of the 8th ACM SIGKDD Int'l Conference on Knowledge Discovery and Data Mining, Edmonton
[5] S. K. Harms, J. Deogun, and T. Tadesse, “Discovering Sequential Association Rules with Constraints and Time Lags in Multiple Sequences,”Proc. of the 13th Int'l Symposium on Methodologies for Intelligent Systems, pp. 432-441, Lyon, France, June 27-29, 2002 Sách, tạp chí
Tiêu đề: Discovering Sequential Association Rules with Constraints and Time Lags in Multiple Sequences,”"Proc. of the 13th Int'l Symposium on Methodologies for Intelligent Systems
[6] J. Han and M. Kamber, “Data Mining: Concepts and Techniques,” Morgan Kaufmann Publishers, San Francisco, CA, 2002 Sách, tạp chí
Tiêu đề: Data Mining: Concepts and Techniques,” "Morgan Kaufmann Publishers
[7] Q. Yang and X. Wu, “10 Challenging Problems in Data Mining Research,” International Journal of Information Technology and Decision Making, vol. 5, pp.597-604, 2006 Sách, tạp chí
Tiêu đề: 10 Challenging Problems in Data Mining Research,” "International Journal of Information Technology and Decision Making, vol
[8] D. Toshniwal and R. C. Joshi (Oct.2005), “Using Cumulative Weighted Slopes for Clustering Time Series Data,” GESTS Int’l Trans. Computer Science and Engr., Vol.20, No.1, pp. 29-40 Sách, tạp chí
Tiêu đề: Using Cumulative Weighted Slopes for Clustering Time Series Data,” "GESTS Int’l Trans. Computer Science and Engr
[9] S.-S Choi, S.-H. Cha, C. C. Tappert, “A Survey of Binary Similarity and Distance Measures,” Journal of Systemics, Cybernetics and Informatics, vol. 8,no.1, pp. 43-48, 2010 Sách, tạp chí
Tiêu đề: A Survey of Binary Similarity and Distance Measures,” "Journal of Systemics, Cybernetics and Informatics
[10] S.-H. Cha, “Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions,” International Journal of Mathematical Models and Methods in Applied Sciences, vol. 1, no. 4, pp. 300-307, 2007 Sách, tạp chí
Tiêu đề: Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions,” "International Journal of Mathematical Models and Methods in Applied Sciences
[11] D. Berndt and J. Clifford, “Using dynamic time warping to find patterns in time series,” In Proceedings of AAAI Workshop on Knowledge Discovery in Databases, KDD 94, Seattle, Washington, USA,1994, pp. 359-370 Sách, tạp chí
Tiêu đề: Using dynamic time warping to find patterns in time series,” In "Proceedings of AAAI Workshop on Knowledge Discovery in Databases
[12] M. Vlachos, D. Gunopulos, G. Das, “Indexing Time Series under Condition of Noise,” In M. Last, A. Kandel & H. Bunke (Eds.), Data Mining in Time Series Databases. World Scientific Publishing, 2004 Sách, tạp chí
Tiêu đề: Indexing Time Series under Condition of Noise,” In "M. Last, A. Kandel & H. Bunke (Eds.), Data Mining in Time Series Databases
[13] E. Keogh, “Mining Shape and Time Series Databases with Symbolic Representations,” In tutorial of the 13rd ACM International Conference on Knowledge Discovery and Data Mining, KDD 2007, California, USA Sách, tạp chí
Tiêu đề: Mining Shape and Time Series Databases with Symbolic Representations,” In "tutorial of the 13rd ACM International Conference on Knowledge Discovery and Data Mining
[14] E. Keogh and C. A. Ratanamahatana, “Exact Indexing of Dynamic Time Warping,” in VLDB '02 Proceedings of the 28th international conference on Very Large Data Bases , 2002, pp. 406-417 Sách, tạp chí
Tiêu đề: Exact Indexing of Dynamic Time Warping,” in "VLDB '02 Proceedings of the 28th international conference on Very Large Data Bases
[15] R. Agrawal, C. Faloutsos, A. Swami , “Efficient similarity search in sequence databases,” In Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithms, Chicago, 1993, pp. 69-84 Sách, tạp chí
Tiêu đề: Efficient similarity search in sequence databases,” In "Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithms
[16] K. Chan and A. W. Fu, “Efficient Time Series Matching by Wavelets,” InProceedings of the 15th IEEE Int'l Conference on Data Engineering, Sydney, Australia, 1999, pp. 126-133 Sách, tạp chí
Tiêu đề: Efficient Time Series Matching by Wavelets,” In"Proceedings of the 15th IEEE Int'l Conference on Data Engineering
[17] E. Keogh, K. Chakrabarti , M. Pazzani , S. Mehrotra , “Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases,” In Sách, tạp chí
Tiêu đề: Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases
[18] E. Keogh, K. Chakrabarti, S. Mehrotra, and M. Pazzani, “Locally adaptive dimensionality reduction for indexing large time series databases,” In Proceedings of the 2001 ACM SIGMOD Conference on Management of Data, 2001, pp. 151- 162 Sách, tạp chí
Tiêu đề: Locally adaptive dimensionality reduction for indexing large time series databases,” In "Proceedings of the 2001 ACM SIGMOD Conference on Management of Data
[19] E. Fink, K. B. Pratt, “Indexing of compressing time series,” In Mark Last, Abraham Kandel and Horst Bunke, editors. Data mining in time series Databases, World Scientific, Singapore, 2003 Sách, tạp chí
Tiêu đề: Indexing of compressing time series,” In" Mark Last, Abraham Kandel and Horst Bunke, editors. Data mining in time series Databases
[20] A. Strehl, and J. Ghosh, “Cluster Ensembles – A Knowledge Reuse Framework for Combining Multiple Partitions,” J. of Machine Learning Research, 3(3), 2002, pp. 583-617 Sách, tạp chí
Tiêu đề: Cluster Ensembles – A Knowledge Reuse Framework for Combining Multiple Partitions,” "J. of Machine Learning Research

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN