fact Severi conjectured that all such surfaces were rational. In [4] Dolgachev in fact constructs simply connected elliptic sur faces with P = 0* which are not rational. Let V be an an[r]
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 672 |
Dung lượng | 37,37 MB |
Nội dung
fact Severi conjectured that all such surfaces were rational. In [4] Dolgachev in fact constructs simply connected elliptic sur faces with P = 0* which are not rational. Let V be an an[r]
Ngày đăng: 16/01/2021, 09:31
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết | ||
---|---|---|---|---|
20. F. Waldhausen, Algebraic K-theory of topological spaces, I, Preprint, University of Bielefeld | Sách, tạp chí |
|
||
1. J. S. Birman, Braids, Links, and Mapping Class Groups, Annals Studies No. 82, Princeton University Press (1975) | Khác | |||
12. D. Quillen, Higher Algebraic K-Tlleory: I, Springer Verlag Lecture Notes in Mathematics No. 341, pp* 85-147 | Khác | |||
13. D. B. Ray and I. M. Singer, R-torsion and the Laplacian on Riemannian manifolds, Advances in Mathematics Vol. 7 (1971], pp. 145-210 | Khác | |||
14. , Analytic torsion for complex manifolds, Annals of Math. Vol. 98, No. 1 C.1973}, pp. 154-177 | Khác | |||
15. G. deRham, M. Kervaire, and S. Maumary, Torsion et type sim | Khác | |||
16. H. Sah and J. Wagoner, Second homology of Lie groups made discrete, Communications in Algebra, 5(6), 1977, pp. 611-642 | Khác | |||
17. I. M. Singer, The n-invariant and its relation to real qua | Khác | |||
19. , Diffeomorphisms, Êô, and Analytic Torsion, Proceedings of Symposia in Pure Mathematics CAMS Summer Institute 1976) | Khác |
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN