We consider the equations of the perturbed motion in the form see Some Models of Real World Phenomena Stability Analysis via Matrix Functions Method Byushgens and Studnev [18] dα dt dωz [r]
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 130 |
Dung lượng | 4,33 MB |
Nội dung
We consider the equations of the perturbed motion in the form see Some Models of Real World Phenomena Stability Analysis via Matrix Functions Method Byushgens and Studnev [18] dα dt dωz [r]
Ngày đăng: 13/01/2021, 10:20
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết |
---|---|---|
1. Abdullin, P.Z., Anapolskii, L.Yu., et al., Method of Vector Lyapunov Functions in Stability Theory, Nauka, Moscow, 1987. (Russian) | Khác | |
2. Aminov, A.B. and Sirazetdinov, T.K., The method of Liapunov functions in prob- lems of multistability of motion, Prikl. Math. Mekh. 51 (1987), 553–558. (Russian) 3. , Lyapunov functions for studying the stability in the large of nonlinear | Khác | |
4. Antosiewicz, H.A., A survey of Liapunov’s second method., in Contribution to the Theory of Nonlinear Oscillations (S.Lefschetz, ed.), vol. 4, Princeton University Press, 1958, pp. 141–166 | Khác | |
5. Arnold, L., Stochastic Differential Equations: Theory and Applications, Wiley, New York, 1974 | Khác | |
9. Bailey, F.N., The application of Lyapunov’s second method to interconnected sys- tems, J. Soc. Ind. Appl. Math. Ser. A 3 (1965), 443–462 | Khác | |
10. Barbashin, Ye.A., The Liapunov Functions, Nauka, Moscow, 1970. (Russian) 11. , Introduction to the Stability Theory, Nauka, Moscow, 1967. (Russian) 12. Barbashin, Ye.A. and Krasovskii, N.N., On the stability of motion in the large | Khác | |
13. , On the existence of Liapunov functions in the case of asymptotic stability in the whole, Prikl. Math. Mekh. 18 (1954), 345–350. (Russian) | Khác | |
14. Barnett, S. and Storey, C., Matrix Methods in Stability Theory, Nelson, London, 1970 | Khác | |
15. Bellman, R., Stability Theory of Differential Equatioins, Academic Press, New York, 1953 | Khác | |
16. , Vector Lyapunov Functions, SIAM Journ. Contr. Ser. A 1 (1962), 32–34 | Khác |
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN