1. Trang chủ
  2. » Luận Văn - Báo Cáo

Chế tạo vật liệu bentonit fe3o4 bằng phương pháp hóa siêu âm ứng dụng trong hấp phụ methylene xanh trong nước

93 15 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 93
Dung lượng 2,89 MB

Nội dung

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM VILAYKONE PHAKAXOUM CHẾ TẠO VẬT LIỆU BENTONIT/Fe3O4 XỐP BẰNG PHƯƠNG PHÁP HÓA SIÊU ÂM ỨNG DỤNG HẤP PHỤ METHYLENE XANH TRONG NƯỚC LUẬN VĂN THẠC SĨ HÓA HỌC THÁI NGUYÊN - 2020 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM VILAYKONE PHAKAXOUM CHẾ TẠO VẬT LIỆU BENTONIT/Fe3O4 XỐP BẰNG PHƯƠNG PHÁP HÓA SIÊU ÂM ỨNG DỤNG HẤP PHỤ METHYLENE XANH TRONG NƯỚC Ngành: Hóa Vơ Cơ Mã ngành: 8.44.01.13 LUẬN VĂN THẠC SĨ HÓA HỌC Người hướng dẫn khoa học: TS NGUYỄN QUỐC DŨNG THÁI NGUYÊN - 2020 LỜI CAM ĐOAN Tôi xin cam đoan: Đề tài: “Chế tạo vật liệu bentonit/Fe3O4 phương pháp hóa siêu âm ứng dụng hấp phụ methylene xanh nước” thân thực Các số liệu, kết đề tài trung thực Nếu sai thật xin chịu trách nhiệm Thái Nguyên, tháng 09 năm 2020 Tác giả luận văn Vilaykone PHAKAXOUM i LỜI CẢM ƠN Trước hết, em xin tỏ lòng biết ơn sâu sắc đến TS.Nguyễn Quốc Dũng, người tận tình động viên, giảng dạy, bảo, hướng dẫn định hướng cho tơi suốt q trình học tập thực luận văn Em xin gửi lời cảm ơn thầy, giáo Khoa Hóa học, thầy Phịng Đào tạo, thầy Ban Giám hiệu trường Đại học Sư phạm - Đại học Thái Nguyên giảng dạy, tạo điều kiện giúp đỡ em trình học tập thời gian qua Em xin gửi lời cảm ơn chân thành tới PGS.TS Đặng Văn Thành, Bộ môn Vật lý - Lý sinh, Trường Đại học Y - Dược cho phép em sử dụng sở vật chất trang thiết bị q trình thực thực nghiệm Cuối cùng, tơi cảm ơn gia đình, bạn bè, đồng nghiệp động viên giúp đỡ tơi hồn thành luận văn Mặc dù có nhiều cố gắng, song luận văn khó tránh khỏi thiếu sót, mong nhận góp ý giúp đỡ Hội đồng khoa học Quý thầy cô, anh chị em đồng nghiệp bạn bè Em xin trân trọng cảm ơn! Thái Nguyên, tháng năm 2020 Tác giả Vilaykone PHAKAXOUM ii MỤC LỤC LỜI CAM ĐOAN i LỜI CẢM ƠN ii MỤC LỤC iii DANH MỤC CÁC KÍ HIỆU VÀ CHỮ VIẾT TẮT v DANH MỤC CÁC BẢNG vi DANH MỤC CÁC HÌNH vii MỞ ĐẦU Chương TỔNG QUAN 1.1 Giới thiệu vật liệu bentonit/Fe3O4 1.1.1 Bentonit 1.1.2 Vật liệu Fe3O4 1.1.3 Phương pháp hóa siêu âm 1.2 Phương pháp xử lý nguồn nước bị ô nhiễm 1.3 Mơ hình hấp phụ đẳng nhiệt 1.3.1 Đẳng nhiệt Langmuir .10 1.3.2 Đường đẳng nhiệt Freundlich 10 1.3.3 Đường đẳng nhiệt Dubinin-Radushkevich 11 1.4 Tình hình nghiên cứu ngồi nước 11 1.4.1 Tình hình nghiên cứu nước 11 1.4.2 Tình hình nghiên cứu nước 14 Chương THỰC NGHIỆM 16 2.1 Dụng cụ, hóa chất .16 2.2 Tổng hợp Bentonit/Fe3O4 16 2.3 Khảo sát tính chất tính chất vật lý, đặc điểm bề mặt vật liệu 18 2.3.1 Phương pháp sử dụng kính hiển vi điện tử quét 18 2.3.2 Phương pháp nhiễu xạ tia X 18 2.3.3 Phương pháp phổ hồng ngoại hấp thụ .18 2.3.4 Phương pháp phổ UV-Vis .19 2.3.5 Phương pháp BET xác định diện tích bề mặt riêng .19 2.3.6 Phương pháp từ kế mẫu rung 20 2.4 Nghiên cứu khả hấp phụ MB theo phương pháp hấp phụ tĩnh 21 Chương KẾT QUẢ VÀ THẢO LUẬN 23 3.1 Hình thái, cấu trúc vật liệu 23 3.1.1 Hình thái bề mặt 23 3.1.2 Cấu trúc vật liệu 24 3.1.3 Tính chất bề mặt cấu trúc mao quản vật liệu .25 3.1.4 Tính chất từ vật liệu 26 3.2 Đường chuẩn xác định nồng độ MB 29 3.3 Nghiên cứu khả hấp phụ vật liệu theo phương pháp hấp phụ tĩnh .30 3.3.1 Điểm đẳng điện vật liệu 30 3.3.2 Ảnh hưởng pH 31 3.3.3 Ảnh hưởng thời gian hấp phụ 33 3.3.4 Ảnh hưởng khối lượng vật liệu 35 3.3.5 Ảnh hưởng nồng độ MB ban đầu 36 3.3.6 Ảnh hưởng nhiệt độ 38 3.3 Khảo sát số mơ hình đẳng nhiệt hấp phụ 39 3.3.1 Mơ hình đẳng nhiệt hấp phụ Langmuir 40 3.3.2 Mơ hình đẳng nhiệt hấp phụ Friundlich 41 KẾT LUẬN .43 CƠNG TRÌNH CƠNG BỐ CĨ LIÊN QUAN ĐỀN ĐỀ TÀI 44 TÀI LIỆU THAM KHẢO .45 PHỤ LỤC DANH MỤC CÁC KÍ HIỆU VÀ CHỮ VIẾT TẮT Tên tiếng việt Bentonite Tên tiếng Anh Bentonite Viết tắt BO Brunauer, Emmett and Teller Brunauer, Emmett and Teller BET Bentonit/Fe3O4 Bentonite/Fe3O4 BFC Hiển vi điện tử quét Scanning Electron Microscope SEM Hồng ngoại hấp thụ Fourier-transform infrared FTIR Methylene xanh Methylene blue Nhiễu xạ tia X X-ray Diffraction XRD Tử ngoại - khả kiến Ultraviolet-Visible UV-Vis v MB DANH MỤC CÁC BẢNG Bảng 3.1 Thơng số tính chất bề mặt cấu trúc mao quản 26 Bảng 3.2 Số liệu ảnh ảnh hưởng pH đến dung lượng hấp phụ 32 Bảng 3.3 Ảnh hưởng thời gian hấp phụ 34 Bảng 3.4 Ảnh hưởng khối lượng vật liệu đến khả hấp phụ 35 Bảng 3.5 Sự phụ thuộc hiệu suất, dung lượng hấp phụ vào nồng độ đầu 37 Bảng 3.6 Sự phụ thuộc hiệu suất hấp phụ vào nhiệt độ hấp phụ 38 Bảng 3.7 Các thông số từ thực nghiệm theo mơ hình hấp phụ Langmuir Frieundlich .42 Bảng 3.8 So sánh qmax BFC số vật liệu hấp phụ khác 42 vi DANH MỤC CÁC HÌNH Hình 1.1 Mơ hình lõi vỏ hạt nano từ [41] Hình 1.2 Công thức cấu tạo MB Hình 2.1 Sơ đồ minh họa thiết bị cho trình chế tạo BFC, ảnh nhỏ ảnh chụp trình chế tạo với 1: pipet chứa dung dịch Fe3+ Fe2+, 2: hỗn hợp bentonit NaOH, 3: que khuấy 17 Hình 2.2 Sơ đồ khối từ kế mẫu rung 21 Hình 3.1 Ảnh SEM vật liệu (a) BO, (b) Fe3O4 (c) BFC 23 Hình 3.2 Giản đồ nhiễu xạ tia X Fe3O4, BO BFC 24 Hình 3.3 Phổ IR BO, BFC, Fe3O4 24 Hình 3.4 Đường đẳng nhiệt hấp phụ - khử hấp phụ N2 (a) BO BFC (b) Fe3O4 25 Hình 3.5 Đường cong từ trễ vật liệu Fe3O4, Bentonit/Fe3O4 (1:5), Bentonit/Fe3O4 (1:2), Bentonit/Fe3O4 (2:1) 27 Hình 3.6 Mơ hình mơ tả chế hình thành vật liệu BFC 28 Hình 3.1 30 Đường chuẩn xác định nồng độ MB Hình 3.8 Xác định điểm đẳng điện vật liệu BFC 31 Hình 3.9 Ảnh hưởng pH đến dung lượng hấp phụ MB 32 Hình 3.10 Sự phụ thuộc dung lượng hấp phụ vào thời gian hấp phụ 34 Hình 3.11 Ảnh hưởng khối lượng vật liệu đến dung lượng hấp phụ MB 36 Hình 3.12 Ảnh hưởng nồng độ dung dịch MB ban đầu đến hiệu suất dung lượng hấp phụ vật liệu BFC 37 Hình 3.13 39 Ảnh hưởng nhiệt độ vật liệu đến dung lượng hấp phụ MB Hình 3.14 Đường đẳng nhiệt Langmuir hấp phụ MB BFC 39 Hình 3.15 Sự phụ thuộc ���� vào Ce mơ hình hấp phụ đẳng nhiệt Langmuir 40 vii Hình 3.16 đẳng Sự phụ thuộc ������vào ����� mơ hình hấp phụ nhiệt Freundlich 41 vii 78(02), 45-50 TÀI LIỆU TIẾNG ANH Ai, Zhang C., and Chen Z (2011), “Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite”, J Hazard Mater., vol 192, no 3, pp 1515-1524 10 Akgül M and Karabakan A (2011), “Promoted dye adsorption performance over desilicated natural zeolite”, Microporous mesoporous Mater., vol 145, no 1-3, pp 157-164 11 Ayawei N., Angaye S S., Wankasi D , and Dikio E D.(2015), “Synthesis, characterization and application of Mg/Al layered double hydroxide for the degradation of congo red in aqueous solution”, Open J Phys Chem., vol 5, no 03, p 56 12 Ayawei N., Ekubo A T., Wankasi D., and Dikio E D (2015), “Adsorption of congo red by Ni/Al-CO3: equilibrium, thermodynamic and kinetic studies”, Orient J Chem., vol 31, no 3, pp 1307-1318 13 Boparai H K., Joseph M., and O’Carroll D M (2011), “Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles”, J Hazard Mater., vol 186, no 1, pp 458-465 14 Bulut Y and Karaer H (2015), “Adsorption of methylene blue from aqueous solution by crosslinked chitosan/bentonite composite,” J Dispers Sci Technol., vol 36, no 1, pp 61-67 15 Chang J., Ma J., Ma Q., Zhang D., Qiao N., Hu M., Ma H (2016), “Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite”, Appl Clay Sci., vol 119, pp 132-140, doi: 10.1016/j.clay.2015.06.038 16 Cottet L , Almeida C A P , Naidek N , Viante M F , Lopes M C., and Debacher N A (2014), “Adsorption characteristics of montmorillonite clay modified with iron oxide with respect to methylene blue in aqueous media”, Appl Clay Sci., vol 95, pp 25-31 17 Dąbrowski A (2001), “Adsorption-from theory to practice”, Adv Colloid Interface Sci., vol 93, no 1-3, pp 135-224 18 Dai H and Huang H (2016), “Modified pineapple peel cellulose hydrogels embedded with sepia ink for effective removal of methylene blue”, Carbohydr Polym., vol 148, pp 1-10 19 Dashamiri S., Ghaedi M., Asfaram A., Zare F., and Wang S (2017), “Multi-response optimization of ultrasound assisted competitive adsorption of dyes onto Cu(OH)2-nanoparticle loaded activated carbon: central composite design”, Ultrason Sonochem., vol 34, pp 343-353 20 Du Q., Sun J., Li Y., Yang X., Wang X., Wang Z., Xia L (2014), “Highly enhanced adsorption of congo red onto graphene oxide/chitosan fibers by wet-chemical etching off silica nanoparticles”, Chem Eng J., vol 245, pp 99-106 21 El-Latif M A., Ibrahim A M., and El-Kady M F (2010), “Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using biopolymer oak sawdust composite”, J Am Sci., vol 6, no 6, pp 267-283 22 Feddal I., Ramdani A., Taleb S., Gaigneaux E M., Batis N., and Ghaffour N (2014), “Adsorption capacity of methylene blue, an organic pollutant, by montmorillonite clay”, Desalin Water Treat., vol 52, no 13-15, pp 2654-2661 23 Foo K Y and Hameed B H (2010), “Insights into the modeling of adsorption isotherm systems,” Chem Eng J., vol 156, no 1, pp 2-10 24 Gao S., Liu L., Tang Y., Jia D., Zhao Z., and Wang Y (2016), “Coal based magnetic activated carbon as a high performance adsorbent for methylene blue”, J Porous Mater., vol 23, no 4, pp 877-884 25 Gil A., F Assis C C , Albeniz S , and Korili S A (2011), “Removal of dyes from wastewaters by adsorption on pillared clays”, Chem Eng J., vol 168, no 3, pp 1032-1040 26 Hamdaoui O and Naffrechoux E (2007), “Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: Part I Twoparameter models and equations allowing determination of thermodynamic parameters”, J Hazard Mater., vol 147, no 1-2, pp 381394 27 Hubbe M A., Park J., and Park S (2014), “Cellulosic substrates for removal of pollutants from aqueous systems: A review Part Dissolved petrochemical compounds”, BioResources, vol 9, no 4, pp 7782-7925, 28 Hu L., Yang Z., Cui L., Li Y., Ngo H H., Wang Y., Wei Q., Ma H., Yan L., Du B (2016), “Fabrication of hyperbranched polyamine functionalized graphene for high-efficiency removal of Pb (II) and methylene blue”, Chem Eng J., vol 287, pp 545-556 29 Knaebel K S (2011), “Adsorbent selection”, Accessed on, vol 6, no 30 Kodama R H , Makhlouf S A , and Berkowitz A E (1997), “Finite size effects in antiferromagnetic NiO nanoparticles”, Phys Rev Lett., vol 79, no 7, p 1393 31 Lee J W., Choi S P , Thiruvenkatachari R , Shim W G , and Moon H (2006), “Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes”, Dye Pigment., vol 69, no 3, pp 10.1016/j.dyepig.2005.03.008 196-203, doi: 32 Lee S M and Tiwari D (2012), “Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview”, Appl Clay Sci., vol 59, pp 84-102 33 Lin S., Song Z., Che G., Ren A., Li P., Lin C., Zang T (2014), “Adsorption behavior of metal-organic frameworks for methylene blue from aqueous solution”, Microporous mesoporous Mater., vol 193, pp 2734 34 Lou Z., Zhou Z., Zhang W., Zhang X (2015), “Magnetized bentonite by Fe3O4 nanoparticles treated as adsorbent for methylene blue removal from aqueous solution: Synthesis, characterization, mechanism, kinetics and regeneration”, J Taiwan Inst Chem Eng., vol 49, pp 199-205 35 Métivier-Pignon H., Faur-Brasquet C., and Le Cloirec P (2003), “Adsorption of dyes onto activated carbon cloths: Approach of adsorption mechanisms and coupling of ACC with ultrafiltration to treat coloured wastewaters”, Sep Purif Technol., vol 31, no 1, pp 3-11 36 Mittal H., Ballav N., and Mishra S B (2014), “Gum ghatti and Fe 3O4 magnetic nanoparticles based nanocomposites for the effective adsorption of methylene blue from aqueous solution”, J Ind Eng Chem., vol 20, no 4, pp 2184-2192 37 Mohan S V., Bhaskar Y V., and Karthikeyan J (2004), “Biological decolourisation of simulated azo dye in aqueous phase by algae Spirogyra species”, Int J Environ Pollut., vol 21, no 3, pp 211222, 2004 38 Mohapatra S , Pramanik N., Mukherjee S , Ghosh, S K and Pramanik P (2007), “A simple synthesis of amine-derivatised superparamagnetic iron oxide nanoparticles for bioapplications”, J Mater Sci., vol 42, no 17, pp 7566-7574 39 Nuengmatcha P., Chanthai S., Mahachai R., and Oh W.-C (2016), “Sonocatalytic performance of ZnO/graphene/TiO2 nanocomposite for degradation of dye pollutants (methylene blue, texbrite BAC-L, texbrite BBU-L and texbrite NFW-L) under ultrasonic irradiation”, Dye Pigment., vol 134, pp 487-497 40 Odom I E (1984), “Smectite clay minerals: properties and uses”, Philos Trans R Soc London Ser A, Math Phys Sci., vol 311, no 1517, pp 391-409 41 Ozkaya T., Toprak M S., Baykal A., Kavas H., Köseoğlu Y., and Aktaş B (2009), “Synthesis of Fe3O4 nanoparticles at 100 C and its magnetic characterization”, J Alloys Compd., vol 472, no 1-2, pp 18-23 42 Peters T and Werner U (1995), “Developments in Waste-Water Treatment Technology”, Brennstoff-Warme-Kraft, vol 47, no 3, pp Ba14-Ba21 43 Pirbazari A E , Saberikhah E , and Kozani S S H (2014), “Fe3O4wheat straw: preparation, characterization and its application for methylene blue adsorption”, Water Resour Ind., vol 7, pp 23-37 44 Polubesova T , Chen Y , Navon R., and Chefetz B (2008), “Interactions of hydrophobic fractions of dissolved organic matter with Fe3+-and Cu2+montmorillonite”, Environ Sci Technol., vol 42, no 13, pp 4797-4803 45 Ravikumar K., Deebika B., and Balu K (2005), “Decolourization of aqueous dye solutions by a novel adsorbent: Application of statistical designs and surface plots for the optimization and regression analysis”, J Hazard Mater., vol 122, no 1-2, pp 75-83 46 SenthilKumar P., Ramalingam S., Abhinaya R.V, Kirupha S.D., Vidhyadevi T., and Sivanesan S (2012), “Adsorption equilibrium, thermodynamics, kinetics, mechanism and process design of zinc (II) ions onto cashew nut shell”, Can J Chem Eng., vol 90, no 4, pp 973982 47 Singh S., Barick K C., and Bahadur D (2011), “Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens”, J Hazard Mater., vol 192, no 3, pp 1539-1547 48 Sivakumar P and Palanisamy P N (2009), “Adsorption studies of basic Red 29 by a non-conventional activated carbon prepared from Euphorbia antiquorum L”, Int J Chem Tech Res, vol 1, no 3, pp 502-510 49 Song C., Wu S., Cheng M., Tao P., Shao M., and Gao G (2014), “Adsorption studies of coconut shell carbons prepared by KOH activation for removal of lead (II) from aqueous solutions”, Sustainability, vol 6, no 1, pp 86-98 50 Shooto N D., Ayawei N., Wankasi D., Sikhwivhilu L., and Dikio E D (2016), “Study on cobalt metal organic framework material as adsorbent for lead ions removal in aqueous solution”, Asian J Chem., vol 28, no 2, p 277 51 Tan I A W., Ahmad A L., and Hameed B H (2008), “Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies”, Desalination, vol 225, no 1-3, pp 13-28 52 Travis C C and Etnier E L (1981), “A survey of sorption relationships for reactive solutes in soil”, J Environ Qual., vol 10, no 1, pp 8-17 53 Vereda F., Vicente J De , and Hidalgo-Alvarez R (2013), “Oxidation of ferrous hydroxides with nitrate: A versatile method for the preparation of magnetic colloidal particles”, J Colloid Interface Sci., vol 392, pp 5056 54 Vijayakumar R., Koltypin Y., Felner I., and Gedanken A (2000), “Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles”, Mater Sci Eng A, vol 286, no 1, pp 101-105 55 Vinothkannan M., Karthikeyan C., Kim A R., and Yoo D J (2015), “One-pot green synthesis of reduced graphene oxide (RGO)/Fe 3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation”, Spectrochim Acta Part A Mol Biomol Spectrosc., vol 136, pp 256-264 56 Wu S ,Zhao X., Li Y., Zhao C., Du Q., Sun J., Wang Y., Peng X., Xia Y., Wang Z (2013), “Adsorption of ciprofloxacin onto biocomposite fibers of graphene oxide/calcium alginate”, Chem Eng J., vol 230, pp 389-395 57 Wu X.-L , Shi Y., Zhong S., Lin H., and Chen J.-R (2016), “Facile synthesis of Fe3O4-graphene@ mesoporous SiO2 nanocomposites for efficient removal of Methylene Blue”, Appl Surf Sci., vol 378, pp 8086 58 Xu H., Zeiger B W., and Suslick K S (2013), “Sonochemical synthesis of nanomaterials”, Chem Soc Rev., vol 42, no 7, pp 2555-2567 59 Yan H., Yang H., Li A., and Cheng R (2016), “pH-tunable surface charge of chitosan/graphene oxide composite adsorbent for efficient removal of multiple pollutants from water”, Chem Eng J., vol 284, pp 1397-1405 60 Yao Y., Miao S., Liu S., Ping L., Sun H., and Wang S “Synthesis, characterization, magnetic Fe3 and adsorption (2012), properties of O4@graphene nanocomposite”, Chem Eng J., vol 184, pp 326-332 61 Yao Y., Miao S., Yu S., Ma L P., Sun H., and Wang S (2012), “Fabrication of Fe3O4/SiO2 core/shell nanoparticles attached to graphene oxide and its use as an adsorbent”, J Colloid Interface Sci., vol 379, no 1, pp 20-26 62 Zaghouane-Boudiaf H., Boutahala M., Sahnoun S., Tiar C., and Gomri F (2014), “Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing the 2, 4, 5-trichlorophenol”, Appl Clay Sci., vol 90, pp 81-87 63 Zhang D., Zhou C.H., Lin C.-X., Tong D.-S., and Yu W.-H (2010), “Synthesis of clay minerals”, Appl Clay Sci., vol 50, no 1, pp 1-11 64 Zhao F., Liu L., Yang F., and Ren N (2013), “E-Fenton degradation of MB during filtration with Gr/PPy modified membrane cathode”, Chem Eng J., vol 230, pp 491-498 65 Zhang X., Zhang P., Wu Z., Zhang L., Zeng G., and Zhou C (2013), “Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles”, Colloids Surfaces A Physicochem Eng Asp., pp 4-9 66 Zhou C H (2011), “An overview on strategies towards clay-based designer catalysts for green and sustainable catalysis”, Appl Clay Sci., vol 53, no 2, pp 87-96 67 Zhou C H and Keeling J (2013), “Fundamental and applied research on clay minerals: from climate and environment to nanotechnology”, Appl Clay Sci., vol 74, pp 3-9, 2013 68 Zhou C H , Shen Z.-F , Liu L.-H , and Liu S.M (2011), “Preparation and functionality of clay-containing films”, J Mater Chem., vol 21, no 39 PHỤ LỤC ... là: ? ?Chế tạo vật liệu bentonit/ Fe3O4 xốp phương pháp hóa siêu âm ứng dụng hấp phụ methylene xanh nước? ?? với mục tiêu: Chế tạo thành công vật liệu bentonite/ Fe3O4 cấu trúc xốp phương pháp hóa siêu. .. magnetite Fe3O4 Do nghiên cứu lựa chọn phương pháp đồng kết tủy kết hợp với rung siêu âm để chế tạo vật liệu Fe3O4 /bentonit 1.1.3 Phương pháp hóa siêu âm Phương pháp hóa siêu âm phương pháp sử dụng. .. VILAYKONE PHAKAXOUM CHẾ TẠO VẬT LIỆU BENTONIT/ Fe3O4 XỐP BẰNG PHƯƠNG PHÁP HÓA SIÊU ÂM ỨNG DỤNG HẤP PHỤ METHYLENE XANH TRONG NƯỚC Ngành: Hóa Vơ Cơ Mã ngành: 8.44.01.13 LUẬN VĂN THẠC SĨ HÓA HỌC Người

Ngày đăng: 28/12/2020, 14:37

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w