1. Trang chủ
  2. » Giáo án - Bài giảng

hsg k9

3 321 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 128,5 KB

Nội dung

PHÒNG GD & ĐT KỲ THI CHỌN HỌC SINH GIỎI HUYỆN KRÔNGPĂK NĂM HỌC : 2009-2010 -------------------------- MÔN : TOÁN – LỚP 9 ĐỀ CHÍNH THỨC ( Thời gian làm bài : 150 phút) Câu 1: (4 điểm) Cho biểu thức : 15 11 3 2 2 3 2 3 1 3 x x x A x x x x − − + = + − + − − + 1. Rút gọn A 2. Tìm giá trị của x khi 1 2 A = 3. Tìm giá trị nguyên của x để A là số nguyên. 4. Tìm giá trị của x để A đạt giá trị lớn nhất Câu 2: (4 điểm) 1. Cho 1, 1.x y≥ ≥ Chứng minh : 1 1x y y x xy− + − ≤ . 2. Tìm giá trị lớn nhất của biểu thức: 1 1 ( 1; 1) y x A x y y x − − = + ≥ ≥ Câu 3: (4 điểm) Một đoàn khách du lịch đi tham quan bằng ô tô. Họ quyết định mỗi chiếc ô tô phải chở một số hành khách như nhau. Ban đầu họ định cho mỗi ô tô chở 22 hành khách, nhưng như vậy còn thừa ra một người. Về sau , khi bớt đi 1 ôtô thì có thể phân phối số hành khách như nhau lên mỗi ôtô còn lại. Hỏi ban đầu có bao nhiêu ôtô và có tất cả bao nhiêu khách du lịch, biết rằng mỗi ôtô chỉ chở được không quá 32 người. Câu 4: (5 điểm) Cho đường tròn (O,R) dây AB = R 2 . Trên tiếp tuyến tại A của (O) lấy M sao cho AM = R ( M thuộc nửa mặt phẳng bờ AB không chứa O) 1. Tứ giác AMBO là hình gì? 2. Đường OM cắt (O) tại I, tính IM theo R ( I thuộc cung nhỏ AB ) 3. Tính AI theo R 4. Đường AI cắt BM tại H . Chứng minh AH là phân giác của góc MAB 5. Khi A chuyển động trên (O) thì M di chuyển trên đường nào? Câu 5: (3điểm ) Cho tam giác đều ABC nội tiếp trong đường tròn bán kính R. Một điểm M chạy trên cung nhỏ AB. Hãy chứng minh rằng tổng các khoảng cách từ M đến A và B không lớn hơn đường kính của đường tròn đó. ------------------------------- Hết -------------------------------- ĐÁP ÁN ĐỀ THI HỌC SINH GIỎI HUYỆN NĂM HỌC : 2009-2010 Câu 1: (4điểm) Cho biểu thức 15 11 3 2 2 3 2 3 1 3 x x x A x x x x − − + = + − + − − + Đ /k : 0; 1x x≥ ≠ (0,5đ) 1. Rút gọn: 15 11 (3 2)( 3) (2 3)( 1) ( 1)( 3) ( 1)( 3) ( 1)( 3) x x x x x A x x x x x x − − + + − = − − − + − + − + (1đ) 15 11 3 7 6 2 3 ( 1)( 3) x x x x x x x − − − + − − + = − + (1đ) 7 5 2 ( 1)(5 2) ( 1)( 3) ( 1)( 3) 5 2 3 x x x x x x x x x A x − − − − = = − + − + − = + (1,5đ) Câu 2: (4điểm) 1. Áp dụng bất đẳng thức Côsi cho hai số không âm ta có: 1 1 1 1.( 1) 2 2 y y y y + − − = − ≤ = (0,5đ) 1 2 xy x y⇒ − ≤ (0,5đ) Tương tự : 1 2 xy y x − ≤ (0,5đ) Do đó : 1 1x y y x xy− + − ≤ (0,5đ) 2. Theo câu 1: 1 1 1 1 1 x y y x x y y x xy xy − + − − + − ≤ ⇔ ≤ Do đó : 1 1 1 y x y x − − + ≤ Dấu “=” xảy ra 1 1 2 1 1 2 x x y y − = =   ⇔ ⇔   − = =   Vậy giá trị lớn nhất của A bằng 1. Câu 3: (4điểm) Gọi x là số ôtô có lúc đầu và lúc sau mỗi ôtô chở y người.( đ/k : 2, 32x y≥ ≤ ) Vì mỗi xe lúc đầu dự định chở 22 hành khách nhưng còn thừa ra một người nên số hành khách có :22x +1 người. Vì lúc sau bớt đi 1 xe ôtô nên số xe còn lại là : (x – 1) xe và mỗi xe lúc sau chở y người nên số hành khách là : y(x-1) người. Vậy ta có phương trình: y(x-1) = 22x + 1 22 1 23 22 1 1 x y x x + ⇒ = = + − − Vì y là số tự nhiên, 2x ≥ nên 23 1x − cũng là một số tự nhiên, do đó 23 1x −M Vậy x-1 = 1 hoặc x-1 = 23 Với x-1 = 1 thì x = 2 ⇒ y = 22 +23 = 45 . Trái giả thiết mỗi xe chở không quá 32 người. Với x-1 = 23 thì x = 24 22 1 23y⇒ = + = 32〈 .(thoả mãn đ/k) Vậy số ôtô ban đầu là 24 chiếc và tổng số khách du lịch là: 22.24+1= 529 người. Bài 4: (5 điểm) Vẽ hình đúng, ghi GT,KL đúng : (0,5đ) 1. Xét tam giác OAB có OA = OB (=R); AB = R 2 Nên tam giác OAB vuông tại O. (đảo Pytago) Ta có :OB vuông góc với OA (cm trên) MA vuông góc với OA(tính chất tiếp tuyến) / /OB MA⇒ , lại có OB = MA (=R) nên tứ giác AMBO là hình bình hành. Mặt khác : MAO Góc MAOvuông và AM = AO nên AMBO là hình vuông. 2. IM = OM – OI = R 2 -R =R( 2 -1) 3. Gọi C là giao điểm hai đường chéo AB và OM ta có AB vuông góc với OM và CM = 2 2 R . Ta có : CI = CM – IM = 2 2 ( 2 ) 2 2 R R R R R− − = − Tam giác ACI vuông tại C nên: AI 2 = CI 2 +AC 2 ( Pytago) 2 2 2 2 2 2 2 2 2 2 2 2 2 ( ) ( ) 2 2 2 2 2 2 4 4 R R R R R AI R R R R R⇒ = − + = − + + = − 2 2AI R⇒ = − 4. Ta có IAO AIO∠ = ∠ (tam giác AOI cân tại O) mà IAO AHM∠ = ∠ (so le trong AO//MB) .Mà : 0 2 0 1 90 90 IAO A AHM A ∠ + ∠ = ∠ + ∠ = 1 2 A A⇒ ∠ = ∠ Vậy AH là phân giác của góc MAB. 4. Ta có OM = AB = R 2 không đổi , O cố định . Do đó M thuộc đường tròn tâm O bán kính R 2 Bài 5: (3điểm) (Các bạn tự giải nhé, chúc các bạn thành công)

Ngày đăng: 24/10/2013, 18:11

Xem thêm

HÌNH ẢNH LIÊN QUAN

1. Tứ giác AMBO là hình gì? - hsg k9
1. Tứ giác AMBO là hình gì? (Trang 1)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w