Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 71 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
71
Dung lượng
882,82 KB
Nội dung
ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ NGUYỄN NGỌC TUÂN ÁP DỤNG KỸ THUẬT KHAI PHÁ DỮ LIỆU DỰ BÁO THUÊ BAO RỜI MẠNG TRONG MẠNG DI ĐỘNG LUẬN VĂN THẠC SĨ CÔNG NGHỆ THÔNG TIN Hà Nội - 2016 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ NGUYỄN NGỌC TUÂN ÁP DỤNG KỸ THUẬT KHAI PHÁ DỮ LIỆU DỰ BÁO THUÊ BAO RỜI MẠNG TRONG MẠNG DI ĐỘNG Ngành: Công nghệ Thông tin Chuyên ngành: Hệ thống Thông tin Mã số: 60480104 LUẬN VĂN THẠC SĨ CÔNG NGHỆ THÔNG TIN NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS NGUYỄN HÀ NAM Hà Nội - 2016 LỜI CẢM ƠN Tôi xin gửi lời cảm ơn sâu sắc tới PGS.TS.Nguyễn Hà Nam, Trường Đại học Công nghệ - Đại học Quốc gia Hà Nội, người thầy dành nhiều thời gian tận tình bảo, hướng dẫn, giúp đỡ tơi suốt q trình tìm hiểu, nghiên cứu Thầy người định hướng đưa nhiều góp ý q báu q trình tơi thực luận văn Tôi xin chân thành cảm ơn thầy, cô khoa Công nghệ thông tin – Trường Đại học Công nghệ - ĐHQGHN cung cấp cho kiến thức tạo cho điều kiện thuận lợi suốt q trình tơi học tập trường Tơi bày tỏ lịng biết ơn sự giúp đỡ lãnh đạo quan, đồng nghiệp cung cấp liệu, tài liệu cho lời khuyên quý báu Tôi xin cảm ơn gia đình, người thân, bạn bè thành viên nhóm nghiên cứu ln động viên tạo điều kiện tốt cho Tôi xin chân thành cảm ơn! Hà Nội, tháng năm 2016 Họ tên Nguyễn Ngọc Tuân LỜI CAM ĐOAN Tôi xin cam đoan đề tài nghiên cứu riêng tôi, thực sự hướng dẫn PGS.TS Nguyễn Hà Nam Các kết nêu luận văn trung thực chưa công bố cơng trình khác Hà Nội, tháng năm 2016 Họ tên Nguyễn Ngọc Tuân MỤC LỤC LỜI CẢM ƠN LỜI CAM ĐOAN DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT DANH MỤC CÁC BẢNG DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ LỜI MỞ ĐẦU Chương Giới thiệu tổng quan mạng di động kiến thức sở liên quan 1.1.Giới thiệu mạng di động 1.2.Sơ lược tình hình nghiên cứu giới 1.3.Phát biểu toán 1.3.1 Chu trình thuê bao di động 1.3.2 Phát biểu toán 1.4.Kết luận chương Chương Khai phá liệu kỹ thuật phân tích dự báo 2.1.Khai phá liệu 2.1.1 Khái niệm KPDL 2.1.2 Những nhóm tốn KPDL 2.1.3 Các bước xây dựng giải pháp KPDL 2.1.4 Ứng dụng KPDL viễn thông 2.2.Một số kỹ thuật KPDL phân lớp, dự báo 2.2.1 Cây định 2.2.2 Phân lớp Naïve Bayes 2.2.3 Mạng nơ ron nhân tạo 2.2.4 Luật kết hợp 2.2.5 Đánh giá độ xác thuật tốn 2.3.Giới thiệu công cụ weka 2.4.Kết luận chương Chương Giải pháp phát thuê bao di động có khả rời mạng 3.1.Giải pháp chung: 3.2.Giải pháp mạng MobiFone 3.3.Giải pháp đề xuất 3.3.1 Giải pháp đề xuất dùng kỹ thuật khai phá liệu 3.3.2 Giải pháp đề xuất sau cải tiến 3.4 Mơ hình đề xuất áp dụng thực tế Chương Thực nghiệm đánh giá kết 4.1 Chuẩn bị liệu 4.2 Mô tả liệu thực nghiệm 4.3 Kết thực nghiệm theo phương pháp tạ 4.4 Kết thực nghiệm dựa khai phá liệu 4.4.1 Kết thực nghiệm dựa giải pháp khai phá liệu 4.4.2 Kết thực nghiệm dựa khai phá liệu cải tiến 4.5 So sánh đánh giá kết 4.6 Kết luận chương KẾT LUẬN Phụ lục THÔNG TIN BỘ DỮ LIỆU PHỤ LỤC PHÂN TÍCH ĐĂC TRƯNG BỘ DỮ LIỆU THỰC NGHIỆM Nhóm Nhóm Nhóm Nhóm Nhóm Phụ lục Đặc trưng phân lớp giải pháp MobiFone áp dụng Nhóm Nhóm 2: Nhóm 3: Nhóm 4: Nhóm 5: DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT DANH MỤC CÁC BẢNG Bảng 2-1 Các độ đo xác 27 Bảng 4-1 Nhóm thuê bao theo đặc trưng 34 Bảng 4-2 Các nhóm liệu mẫu 35 Bảng 4-3 Tổng hợp kết phương pháp 37 Bảng 4-4 Bảng tổng hợp kết theo giải pháp khai phá liệu 41 Bảng 4-5 Tổng hợp độ xác giải pháp đề xuất 47 DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ Biểu đồ 4-1 So sánh độ đo Accuracy ba giải pháp 48 Biểu đồ 4-2 So sánh thời gian xây dựng mơ hình giải pháp đề xuất đề xuất cải tiến 48 Biểu đồ 4-3 So sánh thời gian dự báo 49 Hình 1-1 Thị phần thuê bao di động tính đến 2013 [2] Hình 1-2 Vịng đời th bao 12 Hình 2-1 Các bước xây dựng hệ thống KPDL [1] 14 Hình 2-2 Biểu diễn định 18 Hình 2-3 Cây định cho việc chơi Tennis 19 Hình 2-4 Mơ hình mạng nơron nhiều lớp 23 Hình 2-5 Tiến trình học 24 Hình 3-1 Giải pháp chung cho tốn dự báo thuê bao rời mạng 29 Hình 3-2 Giải pháp MobiFone áp dụng 30 Hình 3-3 Giải pháp đề xuất dùng kỹ thuật khai phá liệu 30 Hình 3-4 Giải pháp đề xuất cải tiến 30 Hình 3-5 Mơ hình đề xuất áp dụng thực tế 31 Hình 4-1 Kết nhóm giải pháp đề xuất 38 Hình 4-2 Kết nhóm giải pháp đề xuất 39 Hình 4-3 Kết nhóm giải pháp đề xuất 39 Hình 4-4 Kết nhóm giải pháp đề xuất 40 Hình 4-5 Kết nhóm giải pháp đề xuất 40 Hình 4-6 Kết nhóm giải pháp đề xuất cải tiến thử nghiệm 42 Hình 4-7 Kết nhóm giải pháp đề xuất cải tiến sau tối ưu 43 Hình 4-8 Kết nhóm giải pháp đề xuất cải tiến 44 Hình 4-9 Kết nhóm giải pháp đề xuất cải tiến 45 Hình 4-10 Kết nhóm giải pháp đề xuất sau cải tiến 46 Hình 4-11 Kết nhóm giải pháp đề xuất cải tiến 47 LỜI MỞ ĐẦU Thuê bao rời mạng vấn đề “đau đầu” nhà mạng nước giới lẽ khách hàng (thuê bao) người mang lại doanh thu trì hoạt động nhà mạng Để trì phát triển hoạt động kinh doanh mình, nhà mạng phải tìm cách để phát triển thuê bao đồng thời phải tìm cách để trì hoạt động thuê bao hữu Theo nghiên cứu thực tế triển khai nhà mạng cho thấy, tổng chi phí để phát triển thuê bao cao nhiều so với việc trì thuê bao hữu Trong đó, doanh thu từ thuê bao hữu (đặc biệt thuê năm) cao nhiều so với doanh thu thuê bao (theo thống kê MobiFone thuê năm có doanh thu trung bình cao 48% so th bao mới) Chính lý trên, nhà mạng giới khơng ngừng tìm kiếm giải pháp nghiên cứu phát triển ứng dụng để xác định, dự đốn sớm th bao có khả rời mạng để có biện pháp kịp thời tác động nhằm trì th bao hoạt động Xuất phát từ yêu cầu đặt đơn vị mình, tơi thực đề tài luận văn “ÁP DỤNG KỸ THUẬT KHAI PHÁ DỮ LIỆU DỰ BÁO THUÊ BAO RỜI MẠNG TRONG MẠNG DI ĐỘNG” Luận văn sâu vào việc áp dụng kỹ thuật khai phá liệu từ hành vi sử dụng thuê bao di động từ dự báo thuê bao có khả rời mạng Luận văn gồm có phần mở đầu, kết luận 04 chương, cụ thể sau: Chương 1: Giới thiệu tổng quan mạng di động vấn đề liên quan Chương trình bày tổng quan mạng di động, thuê bao rời mạng Phát biểu toán nghiên cứu liên quan Chương 2: Khai phá liệu kỹ thuật phân tích dự báo Nghiên cứu sở lý thuyết KPDL, vấn đề liên quan đến KPDL tốn dự báo th bao rời mạng Tìm hiểu kỹ thuật khai phá liệu sử dụng toán phân lớp, dự báo (chuẩn bị liệu, lựa chọn thuộc tính, phân tích đặc trưng, định, …) áp dụng kỹ thuật KPDL ứng dụng WEKA Chương 3: Giải pháp phát thuê bao di động có khả rời mạng Các phương pháp để phát thuê bao di động có khả rời mạng bao gồm kỹ thuật dựa vào đặc trưng thuê bao, phương pháp ứng dụng kỹ thuật khai phá liệu Chương 4: Thực nghiệm đánh giá kết Nội dung chủ yếu áp dụng mơ hình tìm hiểu vào việc dự báo thuê bao rời mạng Trước tiên áp dụng kỹ thuật toàn liệu chuẩn bị với mơ hình phân tích đặc trưng, định đánh giá Tiếp theo sử dụng kỹ thuật lựa chọn thuộc tính để cải tiến tốc độ xử lý đánh giá độ xác mơ hình dự báo Cuối tiến hành đánh giá kết dự báo mơ hình đưa mơ hình dự báo khuyến nghị để áp dụng vào toán thực tế KẾT LUẬN Từ việc nghiên cứu yêu cầu cấp thiết đặt cơng tác trì phát triển th bao mạng di động, luận văn đạt số kết sau đây: Xây dựng mơ hình dự báo áp dụng kỹ thuật khai phá liệu để phát nhanh xác thuê bao di động có khả rời mạng từ áp dụng giải pháp để trì thuê bao Triển khai mơ hình đề xuất, áp dụng liệu thực tế, so sánh với giải pháp sử dụng áp dụng Các kết đạt cho thấy tiềm áp dụng phương pháp đề xuất vào thực tiễn Trong thời gian tới nghiên cứu tích hợp kỹ thuật vào chương trình hỗ trợ kinh doanh MobiFone đồng thời cải tiến thời gian dự báo kết dự báo Trong thời gian tới tiếp tục cập nhật mơ hình với liệu MobiFone để kết dự đoán cải thiện 50 TÀI LIỆU THAM KHẢO Tiếng Việt [1] Phan Xuân Hiếu (2013),Bài giảng môn học KPDL kho liệu, Trường Đại học Công nghệ, Đại học Quốc gia Hà Nội [2] Bộ Thông tin Truyền thông (2014),Sách Trắng Công nghệ thông tin Truyền thông (CNTT-TT) Việt Nam 2014, Nhà xuất Thông tin Truyền thông, Hà nội [3] Hà Quang Thụy (2010),Bài giảng môn học Kho liệu KPDL, Trường Đại học Công nghệ, Đại học Quốc gia Hà Nội Tiếng Anh [6] [4] Leo Breiman, Jerome Friedmen, and Charles J Stone (1984),Classification and Regression Trees, Wadsworth International Group [5] M Chandar, Laha, A., & Krishna, P (2006),Modeling churn behavior of bank customers using predictive data mining techniques, National conference on soft computing techniques for engineering applications Jiawei Han and Micheline Kamber (2012),Data Mining Concepts and Techniques, Third Edition ed Elsevier Inc [7] John Ross Quinlan (1993),C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers [8] John Ross Quinlan, Induction of decision trees, in Machine Learning 1986 p 81-106 [9] J Burez, & Van den Poel, D (2009), Handling class imbalance in customer churn prediction, Expert System with Applications,36, 4626-4636 [10] S Olafsson, Li, X., & Wu, S (2008), Operations research and data mining, European Journal of Operational Research,187, 2592-1448 [11] Weka - Data Mining with Open Source Machine Learning Software in Java Available from: http://www.cs.waikato.ac.nz/ml/weka/ 51 Phụ lục THÔNG TIN BỘ DỮ LIỆU Thông tin trường liệu STT Tên trường GRAND_PACKAGE_ID STA_DATETIME CUS_TYPE STATUS_ID IS_MEMBER RANK_ID AREA_SK_PSC_N AREA_SK_PSC_N1 AREA_SK_PSC_N2 10 DTKC_THOAI_NOI_N 11 TKKM_THOAI_NOI_N 12 DTTKC_THOAI_LIEN_MANG_N 13 DTTKM_THOAI_LIEN_MANG_N 14 DTTKC_SMS_NOI_N 15 DTTKM_SMS_NOI_N 16 DTTKC_SMS_LIEN_MANG_N 17 DTTKM_SMS_LIEN_MANG_N 18 DTTKC_DATA_N 19 DTTKM_DATA_N 20 DTTKC_KHAC_N 21 DTTKM_KHAC_N 22 DTKC_THOAI_NOI_N1 23 TKKM_THOAI_NOI_N1 24 DTTKC_THOAI_LIEN_MANG_N1 25 DTTKM_THOAI_LIEN_MANG_N1 26 DTTKC_SMS_NOI_N1 27 DTTKM_SMS_NOI_N1 28 DTTKC_SMS_LIEN_MANG_N1 29 DTTKM_SMS_LIEN_MANG_N1 30 DTTKC_DATA_N1 31 DTTKM_DATA_N1 32 DTTKC_KHAC_N1 33 DTTKM_KHAC_N1 34 DTKC_THOAI_NOI_N2 35 TKKM_THOAI_NOI_N2 36 DTTKC_THOAI_LIEN_MANG_N2 37 DTTKM_THOAI_LIEN_MANG_N2 38 DTTKC_SMS_NOI_N2 39 DTTKM_SMS_NOI_N2 40 DTTKC_SMS_LIEN_MANG_N2 41 DTTKM_SMS_LIEN_MANG_N2 42 DTTKC_DATA_N2 43 DTTKM_DATA_N2 44 DTTKC_KHAC_N2 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 DTTKM_KHAC_N2 REMAIN_CREDIT REMAIN_BONUS MONTH_3K3D_NEAREST NUM_OG_CALLS SUM_DURATION_OG SUM_DURATION_IC NUM_SMO NUM_SMT NUM_OG_CALLS_N1 SUM_DURATION_OG_N1 SUM_DURATION_IC_N1 NUM_SMO_N1 NUM_SMT_N1 NUM_OG_CALLS_N2 SUM_DURATION_OG_N2 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 54 SUM_DURATION_IC_N2 NUM_SMO_N2 NUM_SMT_N2 SCR_AMOUNT_N SCR_COUNT_N SCR_AMOUNT_N1 SCR_COUNT_N1 SCR_AMOUNT_N2 SCR_COUNT_N2 DEBIT_N MONTH_DEBIT_N DEBIT_N1 MONTH_DEBIT_N1 DEBIT_N2 MONTH_DEBIT_N2 NUM_VLR_N NUM_VLR_N1 NUM_VLR_N2 NUM_PSC_N NUM_PSC_N1 NUM_PSC_N2 PHONE_MODEL PROM_CODE_N PROM_CODE_N1 PROM_CODE_N2 RM PHỤ LỤC PHÂN TÍCH ĐĂC TRƯNG BỘ DỮ LIỆU THỰC NGHIỆM Nhóm MobiFone đưa tiêu chí thuê bao 3k3d_vlr để nhằm thống kê thuê bao sử dụng thật thuê bao ảo (thuê bao nằm kênh phân phối, thuê bao khách hàng mua dùng để nhắn tin rác, …) Theo đó, thuê bao đạt chuẩn 3k3d_vlr thuê bao thỏa mãn đồng thời tiêu chí sau: (1) tiêu dùng tối thiểu 3.000đ từ tài khoản (2) cập nhật vlr (mở máy) tối thiểu ngày Do vậy, mốc tiêu dùng 3.000đ từ tài khoản mốc cập nhật vlr ngày mốc quan trọng để đánh giá thuê bao Trong phần này, nhóm chuyên gia thực phân tích nhóm th bao khơng phát sinh cước tháng 8/2015 có tiêu dùng tài khoản khơng đạt 3k3d_vlr tháng trước (tháng 7/2015) Nhóm gồm thuê bao thỏa mãn điều kiện sau: - Tiêu dùng tài khoản 3.000đ tháng 7/2015 Hoặc: - Tiêu dùng tài khoản từ 3.000đ trở lên cập nhật VLR ngày tháng 7/2015 Sau phân tích nhóm rút đặc điểm đặc trưng tập thuê bao trước rời mạng (không phát sinh cước) sau: - Tiêu dùng tài khoản 3.000đ tháng trước - Chỉ đạt 3k3d_vlr đến lần tháng liên tục - Không phát sinh giao dịch phát sinh đến giao dịch thoại chiều tháng trước - Không phát sinh giao dịch thoại chiều đến tháng trước - Có xu hướng giảm dần số lượng giao dịch thoại chiều đến tháng liên tục giảm sản lượng thoại chiều đến tháng liên tục - Hầu không phát sinh giao dịch nạp thẻ tháng liền trước - Có xu hướng giảm tần suất nạp thẻ tháng liên tiếp Nhóm Nhóm có 67.565 thuê bao, chiếm tỷ trọng cao MobiQ (51,07%), MobiCard (26,84%), Zone+ (9,55%) Trong cấu thuê bao MobiFone tại, MobiQ chiếm khoảng 49%, MobiCard chiếm khoảng 12%, Zone+ chiếm khoảng 12% 55 Như vậy, rõ ràng nhóm thuê bao MobiCard có tỉ lệ rời mạng cao nhóm khác Sau phân tích nhóm chun gia rút đặc điểm đặc trưng tập thuê bao trước rời mạng (không phát sinh cước) sau: - Tiêu dùng TKC ≥ 3.000đ tiêu dùng TKKM < 3.000đ tháng trước - Có mức tiêu dùng TKKM giảm dần tháng liên tục - Không phát sinh giao dịch phát sinh đến giao dịch thoại chiều tháng trước - Không phát sinh giao dịch phát sinh đến giao dịch sms chiều tháng trước - Không phát sinh giao dịch thoại chiều đến tháng trước - Có xu hướng giảm dần số lượng giao dịch thoại chiều tháng liên tục - Có xu hướng giảm dần số lượng giao dịch sms chiều tháng liên tục - Có xu hướng giảm dần số lượng giao dịch thoại chiều đến tháng liên tục - Hầu không phát sinh giao dịch nạp thẻ tháng liền trước có tần suất nạp thẻ giảm dần tháng liên tục - Có xu hướng giảm dần số ngày cập nhật VLR tháng liên tục Nhóm Nhóm gồm 219.993 thuê bao, MobiQ chiếm tỷ trọng cao với 82,16% MobiQ loại thuê bao có ngày sử dụng linh hoạt, dễ dàng cho khách hàng trì số thuê bao mà không cần tiêu dùng đến TKC Sau phân tích nhóm chun gia rút phần lớn thuê bao thuộc nhóm nằm kênh nằm ngăn kéo (KH mua không sử dụng nữa) Đặc điểm nhóm sau: - Chủ yếu loại hình th bao MobiQ - Hầu không đạt 3k3d_vlr nhiều tháng liên tục (chỉ có 7,5% thuê bao thuộc nhóm có đạt 3k3d_vlr lần tháng liên tiếp) - Hầu không tiêu dùng tài khoản tháng liên tục (tỉ lệ đạt 90%) 56 - Có mức tiêu dùng TKKM thấp < 3.000đ/tháng tháng liên tục (tỉ lệ đạt 90%) - Hầu không phát sinh giao dịch thoại chiều phát sinh giao dịch (chiếm 95% tháng liên tiếp) - Hầu không phát sinh giao dịch sms chiều phát sinh giao dịch (chiếm 94% tháng liên tiếp) - Hầu không phát sinh giao dịch thoại chiều đến (chiếm 96% tháng liên tiếp) - Hầu không phát sinh phát sinh sms chiều đến (chiếm 91% tháng liên tiếp) - Theo xu hướng giảm sản lượng thoại đến tháng liên tiếp (khoảng 97%) - Chỉ mở máy ngày (chiếm 91% tháng liên tiếp) - Hầu không nạp thẻ tháng trước rời mạng (chỉ có 0,44% nạp thẻ) - Theo xu hướng giảm tần suất nạp thẻ tháng liên tiếp (khoảng 98% thuê bao thể xu hướng này) Nhóm Bản chất nhóm rời mạng (khơng phát sinh cước) từ tháng 7/2015 Nhóm gồm có 1.067.414 thuê bao, chiếm tỉ trọng cao MobiCard (37,69%), MobiQ (27,30%) Mobi365 (21,02%) Trong đó, xét tỉ trọng thuê bao PSC tháng 8/2015 toàn mạng, MobiCard chiếm 12,23%, Mobi365 chiếm 2,64% MobiQ chiếm tới 48,81% Sau phân tích nhóm chun gia có nhận xét đặc điểm nhận dạng nhóm thuê bao sau: - Tiêu dùng TKC (dưới 3000đ) tháng liên tiếp - Tiêu dùng TKKM (dưới 3000đ) tháng liên tiếp - Có xu hướng tiêu dùng TKC TKKM giảm dần tháng liên tiếp (95% thuê bao thể rõ xu hướng này) - Không phát sinh phát sinh giao dịch thoại chiều tháng liên tiếp - Không phát sinh phát sinh giao dịch sms chiều tháng liên tiếp 57 - Có xu hướng giảm dần số lượng giao dịch thoại chiều tháng liên tiếp (93,26% thuê bao thể xu hướng này) - Có xu hướng giảm dần số lượng giao dịch sms chiều tháng liên tiếp (93,9% thể xu hướng này) - Có xu hướng giảm dần số lượng giao dịch sms chiều đến tháng liên tiếp (91,41% thuê bao thể xu hướng này) - Có xu hướng giảm dần số lượng giao dịch thoại chiều đến tháng liên tiếp (91,41% thuê bao thể xu hướng này) - Có xu hướng giảm dần số ngày cập nhật VLR tháng liên tiếp (88,94% thể xu hướng này) - Hầu không nạp thẻ vào tháng liền trước có xu hướng giảm tần suất nạp thẻ tháng liên tiếp Nhóm Nhóm gồm 105.703 thuê bao, chiếm tỷ trọng cao MobiQ (56,68%), MobiCard (15,32%) Zone+ (10,87%) Trong số này, 10,17% thuê bao hội viên chương trình Kết nối dài lâu Sau phân tích nhóm chuyên gia có nhận xét đặc điểm nhận dạng nhóm thuê bao sau: - Nhóm thuê bao hoạt động bình thường mạng: Vẫn nạp thẻ, phát sinh giao dịch thoại đi/đến với tỉ lệ cao, số ngày cập nhật VLR nhiều (≥3 ngày) - Số tiền lại TKC thấp (trên 60% thuê bao có số tiền TKC 3.000đ) - Doanh thu TKC từ dịch vụ sms (nội mạng liên mạng) thấp (dưới 3.000đ/tháng) - Doanh thu TKKM từ dịch vụ sms (nội mạng liên mạng) thấp (dưới 3.000đ/tháng) 58 Phụ lục Đặc trưng phân lớp giải pháp MobiFone áp dụng Nhóm -Tiêu chí phân lớp: Th bao trả trước thỏa mãn đồng thời tiêu chí sau: o Tiêu dùng tài khoản 3.000đ tháng trước o Phát sinh giao dịch thoại chiều tháng trước o Giảm dần số lượng giao dịch thoại chiều đến tháng liên tục liền trước (số giao dịch tháng sau nhỏ số giao dịch tháng trước) o Giảm dần số lượng giao dịch thoại chiều đến tháng liên tục liền trước Nhóm 2: - Tiêu chí phân lớp: o Tiêu dùng TKC ≥ 3.000đ tháng trước o Cập nhật VLR < ngày tháng trước o Phát sinh giao dịch thoại chiều tháng trước o Không phát sinh giao dịch thoại chiều đến tháng trước Nhóm 3: - Tiêu chí phân lớp: o Khơng tiêu dùng TKC tháng trước (Tiêu dùng TKC= 0) o Tiêu dùng TKKM > tháng trước o Không nạp thẻ tháng trước o Có tần suất nạp thẻ giảm dần tháng liên tục liền trước (số lần nạp thẻ tháng sau nhỏ số lần nạp thẻ tháng trước) o Có xu hướng giảm dần số lượng giao dịch thoại chiều đến (hoặc giảm dần sản lượng gọi chiều đến) tháng liên tục liền trước Nhóm 4: - Tiêu chí phân lớp: o Không tiêu dùng TKC tháng trước (Tiêu dùng TKC= 0) 59 o Không tiêu dùng TKKM tháng trước (Tiêu dùng TKKM= 0) o Có số ngày cập nhật VLR giảm dần tháng liên tiếp liền trước (số ngày cập nhật VLR tháng sau nhỏ số ngày cập nhật tháng trước) o Khơng nạp thẻ tháng trước o Có tần suất nạp thẻ giảm dần tháng liên tục liền trước (số lần nạp thẻ tháng sau nhỏ số lần nạp thẻ tháng trước) Nhóm 5: - Tiêu chí phân lớp: o Tiêu dùng TKC ≥ 3.000đ tháng trước o Cập nhật VLR ≥ ngày tháng trước o Có số tiền lại TKC thời điểm cuối tháng trước < 5.000đ o Tiêu dùng TKC < 3.000đ cho dịch vụ sms (nội mạng liên mạng) tháng trước o Tiêu dùng TKKM < 3.000đ cho dịch vụ sms (nội mạng liên mạng) tháng trước 60 ... Giải pháp phát thuê bao di động có khả rời mạng Các phương pháp để phát thuê bao di động có khả rời mạng bao gồm kỹ thuật dựa vào đặc trưng thuê bao, phương pháp ứng dụng kỹ thuật khai phá liệu. .. bao hoạt động Xuất phát từ u cầu đặt đơn vị mình, tơi thực đề tài luận văn ? ?ÁP DỤNG KỸ THUẬT KHAI PHÁ DỮ LIỆU DỰ BÁO THUÊ BAO RỜI MẠNG TRONG MẠNG DI ĐỘNG” Luận văn sâu vào việc áp dụng kỹ thuật. .. Chương Giải pháp phát thuê bao di động có khả rời mạng 3.1.Giải pháp chung: 3.2.Giải pháp mạng MobiFone 3.3.Giải pháp đề xuất 3.3.1 Giải pháp đề xuất dùng kỹ thuật khai phá liệu