Intensified phosphorus removal from synthetic wastewater by lab scale horizontal sub surface flow constructed wetlands using a mixture of coal slag and calcined ferralsols as substrate
Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 104 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
104
Dung lượng
4,98 MB
Nội dung
VIETNAM NATIONAL UNIVERSITY, HANOI VIETNAM JAPAN UNIVERSITY LE THI VAN INTENSIFIED PHOSPHORUS REMOVAL FROM SYNTHETIC WASTEWATER BY LAB-SCALE HORIZONTAL SUB-SURFACE FLOW CONSTRUCTED WETLANDS USING A MIXTURE OF COAL SLAG AND CALCINED FERRALSOLS AS SUBSTRATE MASTER'S THESIS VIETNAM NATIONAL UNIVERSITY, HANOI VIETNAM JAPAN UNIVERSITY LE THI VAN INTENSIFIED PHOSPHORUS REMOVAL FROM SYNTHETIC WASTEWATER BY LAB-SCALE HORIZONTAL SUB-SURFACE FLOW CONSTRUCTED WETLANDS USING A MIXTURE OF COAL SLAG AND CALCINED FERRALSOLS AS SUBSTRATE MAJOR: ENVIRONMENTAL ENGINEERING CODE: 8520320.01 SUPERVISORS: Principal Supervisor: Dr NGUYEN THI AN HANG Co-Supervisor: Assoc Prof Dr SATO KEISUKE Hanoi, 2020 ACKNOWLEDGEMENTS First and foremost, I would like to express my deep gratitudes to Dr Nguyen Thi An Hang, my Principal Supervisor, who gave me the opportunity to get involved in this interesting research She not only provided me valuable advices on this research but also strengthened my research skills, built up my confidence, and encouraged me to overcome all difficulties It would have been impossible to fulfill this work without her enthusiastic supports I extend my sincere thanks to Assoc Prof Dr Sato Keisuke, my Co-supervisor, who gave me practical advices on the feasibility and applicability of my research It was very kind of him to give me opportunities to learn about Japanese culture and people, which will definitely be useful for my future My gratitude is also gone to Dr Vu Ngoc Duy for his extraordinary supports I was immensely benefited from his continuous assistance in constructed wetlands setting up and experimental data processing My special thanks go to B.Sc Nguyen Thi Xuyen, the project assistant, for her helps with taking care of CWs system during the global COVID-19 pandemic period For me, she is a sincere friend and I have learnt a lot from her I would like to acknowledge VNU Vietnam Japan University (VJU), Ritsumeikan University (RITs), and Hiyoshi Corporation for providing me the best conditions to study and have internship in Vietnam and Japan Especially, I am so grateful to Prof Jun Nakajima and Prof Soda Satoshi for teaching me at VJU and supporting me during my internship in Japan This research was completed in the laboratory of the Master’s Program in Environmental Engineering (MEE), VNU Vietnam Japan University (VNU-VJU) I would like to acknowledge Vietnam National Foundation for Science and Technology Development (NAFOSTED) [grant number 105.99-2018.13, 2018], and Asia Research Center, Vietnam National University, Hanoi (ARC-VNU) and Korea Foundation for Advanced Studies (KFAS) [grant number CA.18.11A, 2018] for financial supports i Lastly, I would like to express my deep gratitudes to my parents for raising me with a love of science and supporting me in all my pursuits My heartfelt thanks go to Son-san for his love, accompanying, and comments on my thesis research Thank you all my friends, who were MEE Batch students, for unforgettable memories Hanoi, June 14th 2020 Le Thi Van ii TABLE OF CONTENTS ACKNOWLEDGEMENTS .i TABLE OF CONTENTS iii LIST OF TABLES vi LIST OF FIGURES vii LIST OF ABBREVIATIONS x INTRODUCTION CHAPTER 1: LITERATURE REVIEW 1.1 Pig farming in Vietnam 1.1.1 Pig farming development in Vietnam 1.1.2 Environmental concerns of anaerobically treated swine wastewater 1.2 Phosphorus pollution and remedy technologies 1.2.1 Phosphorus significance and environmental concern 1.2.2 Technologies for phosphorus decontamination of anaerobically treated swine wastewater (ATSWW) 10 1.3 Constructed wetlands .11 1.3.1 Definition 11 1.3.2 Classification of constructed wetlands (CWs) 12 1.3.3 Phosphorus removal by different components in CWs 14 1.3.4 Advantages and disadvantages of CWs in P removal from wastewater 21 1.4 Study subjects 22 1.4.1 Filter materials 22 1.4.2 Plants 26 CHAPTER 2: MATERIALS AND METHODS 28 2.1 Materials 28 2.1.1 Substrates 28 iii 2.1.2 Wetland plants 31 2.2 Experimental set-up 33 2.2.1 Ferralsols calcination 33 2.2.2 Adsorption tests 34 2.2.3 Constructed wetlands design and operation 36 2.3 Analytical methods and equipment 38 2.3.1 Substrate characterization 38 2.3.2 Environmental parameters analysis 41 2.4 Calculation and statistical analysis 44 2.4.1 Calculation 44 2.4.2 Statistical analysis 44 CHAPTER 3: RESULTS AND DISCUSSION 45 3.1 Ferrasols calcination for P removal enhancement 45 3.1.1 Lab-scale Ferralsols calcination 45 3.1.2 Large-scale Ferralsols calcination 46 3.2 Adsorptive behaviours of calcined Ferrasols 46 3.2.1 Factors influencing P adsorption .46 3.2.2 Adsorption isotherms 50 3.2.3 Adsorption kinetics 55 3.3 Characterization of the filter materials 57 3.3.1 Characterization of natural and calcined Ferralsols 57 3.3.2 Characterization of coal slag 64 3.4 Applicability of the investigated filter materials 66 3.5 Treatment performance of sub-surface horizontal flow constructed wetlands 67 3.5.1 P treatment performance 67 3.5.2 Side-effects of filter materials on HSSF-CWs effluents 69 CHAPTER 4: CONCLUSIONS AND RECOMMENDATIONS 73 iv 4.1 Conclusions 73 4.2 Recommendations 73 REFERENCES 75 APPENDICES .89 v LIST OF TABLES Table 1.1 Treatment efficiency of piggery wastewater by anaerobically treatment in Thua Thien Hue Table 1.2 P removal mechanisms of CWs components 14 Table 1.3 Effect of nutrient uptake by plants on removal of nitrogen and phosphorus (%) in different CWs simulated scenarios 19 Table 2.1 Parameters of real post-anarobically swine wastewater in Hanoi 33 Table 3.1 Comparison of P adsorption capacity of investigated filter materials 45 Table 3.2 Coparing CF500 produced in lab-scale and large-scale 46 Table 3.3 Langmuir and Freundlich adsorption isotherm constants 53 Table 3.4 P adsortion capacity of different materials 54 Table 3.5 Kinetic constants 57 Table 3.6 Mineral composition of NF and CF500 samples 60 Table 3.7 Main chemical compositions of NF, CF500 and CS 60 Table 3.8 Types of vibration peak in NF and CF500 62 Table 3.9 The chemical compositions in CF500 and NF 62 Table 3.10 Hydraulic properties of CF500 compared with other materials 64 Table 3.11 The chemical compositions in CS .65 Table 3.12 Physical properties of CS compared with other materials 65 Table 3.13 Selection the mixing ratio of CF500 and CS 66 Table 3.14 The concentration of heavy metals in post-adsorption solutions 71 vi LIST OF FIGURES Figure 1.1 Distribution of pig production in Vietnam by ecological regions Figure 1.2 Swine wastewater .6 Figure 1.3 P is an important and essential nutrient for plants Figure 1.4 HABs are triggered by nutrient enrichment Figure 1.5 Stabilization lagoon 11 Figure 1.6 Classification of CWs 12 Figure 1.7 The diagram of VSSF-CWs 13 Figure 1.8 HSSF-CWs .14 Figure 1.9 P adsorption mechanism on material surface 16 Figure 1.10 Phytoremediation Using Aquatic Plants 17 Figure 1.11 Rhizosphere in CWs plants 18 Figure 1.12 Phosphorus cycle in constructed wetland 18 Figure 1.13 Source structure of the national electricity system by primary energy 22 Figure 2.1 Pha Lai Thermal Power Joint Stock Company 28 Figure 2.2 Principle diagram of electricity production technology 29 Figure 2.3 Sampling location of Ferralsols in Dak Nong Province 30 Figure 2.4 Stone placed at the bottom of CW units 31 Figure 2.5 Sand added on the top of CWs units 31 Figure 2.6 Aquatica ipomoea planted from seeds on the soil before being transferred into CW units 32 Figure 2.7 Cymbopogon citratus kept alive in the tap water before being transferred into CW units 32 Figure 2.8 Aquatica ipomoea at the time being tranferred into CWs .32 Figure 2.9 Carbolite furnace 33 Figure 2.10 Preparing NF for calcination with the commcerical furnace 34 Figure 2.11 Layers structure of tanks in CWs 37 Figure 2.12 Nutrient solution storage tank 38 vii Figure 2.13 The HSSF-CWs system planted with water spinach and lemongrass 38 Figure 2.14 AMRAY Model 1830 Scanning Electron Microscope 40 Figure 2.15 Empyrean equipment 40 Figure 2.16 X-ray fluorescence spectrometer 41 Figure 2.17 FTIR Spectrometer 41 Figure 2.18 Shaker 42 Figure 2.19 UV/Vis Diode Array Spectrophotometer 42 Figure 2.20 The pH meter 42 Figure 2.21 The SensION + EC5, Hach, China 43 Figure 2.22 Atomic absorption spectrophotometer 43 Figure 3.1 Effect of pH of NF and CF500 on P removal 47 Figure 3.2 Effect of dosage of NF and CF500 on P removal 49 Figure 3.3 Effect of temperature of CF500 on P removal 50 Figure 3.4 The fitting Langmuir and Freundlich isotherm models 51 for P adsorption by CF500 51 Figure 3.5 The fitting Langmuir and Freundlich isotherm models for P adsorption by NF 51 Figure 3.6 The fitting Langmuir and Freundlich isotherm modelts for P adsorption by CS 52 Figure 3.7 Linear form of adsorption isortherms: a) Langmuir model and b) Freundlich model of CF500 52 Figure 3.8 Linear form of adsorption isortherm following a) Langmuir model and b) Freundlich model of NF 53 Figure 3.9 Linear forms of adsorption isortherms: a) Langmuir model and b) Freundlich model of CS 53 Figure 3.10 Kinetic curve of CF500 55 Figure 3.11 Kinetic curve of NF 56 Figure 3.12 Kinetic curve of of CS 56 Figure 3.13 SEM observation for a) NF and b) CF500 58 Figure 3.14 XRD spectrum of NF 59 Figure 3.15 XRD spectrum of CF500 59 viii Gagan S., Richa S., Vivek P., Narender S., Bharpur S., Mann A S., 2011 Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (Lemon grass) J Adv Pharm Technol Res Vol 2(1) Pages 3–8 Ghimire U., Nandimandalam H., Martinez‐Guerra E., Gude V.G., 2019 Wetlands for wastewater treatment Water Environment Research Gupta V.K., Mittal A., Krishnan L., Mittal J., 2006 Adsorption treatment and recovery of the hazardous dye, Brilliant Blue FCF, over bottom ash and de-oiled soya Journal of Colloid and Interface Science Vol 293(1) Pages 16–26 Hongling D., Fengping H., 2017 Phosphorus Adsorption Capacity Evaluation for the Substrates Used in Constructed Wetland Systems: a Comparative Study Polish Journal of Environmental Studies Vol 26(3) Pages 1003–1010 Hassan E., 2016 Comparative study on the biosorption of Pb(II), Cd (II) and Zn (II) using Lemon grass (Cymbopogon citratus): kinetics, isotherms and thermodynamics Chemistry International Vol 2(2) Pages 89-102 Herath I., Vithanage M., 2015 Phytoremediation in Constructed wetlands Phytoremediation Spinger, Cham Pages 243-263 Huang L., Gao X., Liu M., Du G., Guo J., Ntakirutimana T., 2012 Correlation among soil microorganisms, soil enzyme activities, and removal rates of pollutants in three constructed wetlands purifying micro-polluted river water Ecological Engineering Vol 46 Pages 98–106 Haq N.A., Jing X., Vymazal J., Xiwu L., 2018 Kinetics of nutrient uptake by economical vegetable species grown in constructed wetlands The Journal of Animal and Plant Sciences Vol 28(3) Page 726 - 731 Introduction about Vietnam's mineral potential (2017) General Department of Geology and Minerals of Vietnam Irwin M.H., 2015 The Handbook of Nonwoven Filter Media, Second Edition 78 Iodache S., Dunea D., Ianache C., 2014 Optimizing Nutrients Removal from Municipal Wastewater Treatment Plants Using Computer Simulation Revista de Chimie Bucharest No.2 Jesus J.M., Danko A.S., Fiúza A., Borges M.T., 2018 Effect of plants in constructed wetlands for organic carbon and nutrient removal: a review of experimental factors contributing to higher impact and suggestions for future guidelines Environmental Science and Pollution Research Vol 25(5) Pages 4149-4164 James T.S., Don J.B., Noel R.K., 2006 Bergey's Manual® of Systematic Bacteriology: Volume Two: The Proteobacteria (Part C) Springer Science & Business Media Kassenga G.R., Mato R.R., 2008 Arsenic contamination levels in drinking water sources in mining areas in Lake Victoria Basin, Tanzania, and its removal using stabilized ferralsols International Journal of Biological and Chemical Science Vol 2(4) Pages 389-400 Kayombo S., Mbwette T.S.A., Katima J.H.Y., Ladegaard N., Jorgensen S.E., 2004 Waste Stabilization Ponds and Constructed Wetlands Design Manual UNEP-IETC/Danida, Dar es Salaam, TZ/Copenhagen, DK Key to the FAO Soil Units Legend of the Soil Map of the World, 1974, UNESCO, Paris Kim Y.H, 2015 Progress in Civil, Architectural and Hydraulic Engineering IV: Proceedings of the 2015 4th International Conference on Civil, Architectural and Hydraulic Engineering (ICCAHE 2015), Guangzhou, China Lametschwandtner A., Lametschwandtner U., 1992 Historical Review and Technical Survey of Vascular Casting and Scanning Electron Microscopy Scanning Electron Microscopy of Vascular Casts: Methods and Applications, 1–11 79 Li D., Jiang J., Li T., Wang J., 2016 Soil heavy metal contamination related to roasted stone coal slag: a study based on geostatistical and multivariate analyses Environmental Science and Pollution Research Vol 23(14) Pages 14405–14413 Le H.N, 2014 Treating livestock wastes reduces environmental pollution and climate change Number of Green Growth Topicts, Vietnam Environment Administration Magazine Liu S., Song H., Li X., Yang F., 2013 Power Generation Enhancement by Utilizing Plant Photosynthate in Microbial Fuel Cell Coupled Constructed Wetland System International Journal of Photoenergy, 2013, 1–10 Liu X., Zhang Y., Li X., Fu C., Shi T., Yan P., 2018 Effects of influent nitrogen loads on nitrogen and COD removal in horizontal subsurface flow constructed wetlands during different growth periods of Phragmites australis Science of the Total Environment Vol 635 Pages 1360-1366 Li Y., Zhu G., Ngo W.J., Tan S.K., 2014 A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: Design, performance and mechanism Science of The Total Environment Pages 908–932 Moore D.M., Reynolds R.C., 1997 X-Ray diffraction and the identification and analysis of clay minerals 2nd Ed Oxford University Press, New York Muindi E.M , Mrema J.P., Semu E., Mtakwa P.W., Gachene C.K., Njogu M.K., 2015 Phosphorus Adsorption and Its Relation with Soil Properties in Acid Soils of Western Kenya International Journal of Plant & Soil Science Vol 4(3) Pages 203-211 Møller H.B., Sommer G.S., Ahring B.K., 2004 Methane productivity of manure, straw and solid fractions of manure Biomass Bioenerg Vol 26 Pages 485 - 495 Mun M.D., Frey J.W., Tesoriero A.J., Black R.W., Duff J.H., Lee K., Maret T.R., Mebane C.A., Waite I.R., Zelt R.B., 2018 Understanding the influence of nutrients 80 on stream ecosystems in agricultural landscapes: U.S Geological Survey Circular 1437, 80 p., Milla O.V., Rivera E.B., Huang W.-J., 2014 Bioaccumulations of Heavy Metals in Ipomoea aquatica Grown in Bottom Ash Recycling Wastewater Water Environment Research Vol 86(5) Pages 398–406 Ntambi E., Tenywa J S., Muhammad N., 2020 Sorption and Desorption Phenomena of Urban Biowaste-Based Heavy Metals by a Ferralsol Journal of Agricultural Chemistry and Environment Vol Pages 13-26 Nguyen H L., Hoa T M., Mohammed J K B., Eppe G., Pramod A., Nguyen T T., 2020 Removal of phosphate from wastewater using coal slag International Journal of Environmental Analytical Chemistry Nguyen T.T., 2019a Study on potential filter materials for use as substrate in constructed wetland to strengthen phosphorus removal from swine wastewater (Master thesis) Vietnam Japan University Hanoi National University Nguyen P.T.L, 2017a Pig Wastewater Management in Vietnam - Legal Framework and Future Orientation Pollution Control Department VEA-MONRE Nguyen V.H., Le T.T., Luu Q.T, Pham D.P, 2019b Health risk of biogas effluent exposure and handling in Vietnam Global Water Pathogen Project Michigan State University, E Lansing, MI, UNESCO Osman A.M., Lu X.W., 2014 Performance Evaluation of the Horizontal Subsurface Flow Constructed Wetland with Ipomoea Aquatica Plant for Rural Domestic Wastewater Treatment Advanced Materials Research Pages 1073-1076, 965–969 FAO-UNESCO Soils map of the world Volume 9: Southeast Asia Pennsylvania's Nutrient Management Act (Act 38, 2005) Program Pham N.B, Kuyama T., 2017 Situation analysis on pig manure and effluent management in Vietnam WEPA Action Programme in Vietnam 81 Pierre R.B., Eric R.H., 2002 Pulp and Paper Mill Effluents Water Environment Research Vol 74 Pages 1-38 Qasaimeh A., AlSharie H., Masoud T., 2015 A review on constructed wetlands components and heavy metal removal from wastewater Journal of Environmental Protection Vol 6(07) Pages 710 QCVN 40:2011/BTNMT: National tecnical regulation on industrial wastewater Qin R., Chen H., 2016 The procession of constructed wetland removal mechanism of pollutants 4th International Conference on Mechanical Materials and Manufacturing Engineering Rattan L., 2016 Encyclopedia of Soil Science (3 edition) Renewable Energy Sustainable Programs for Intelligent Rural Electrification and Poverty Alleviation (RESIREA), 2007 Intelligent Energy Europe Rozari P., Greenway M., Hanandeh A.E., 2016 Phosphorus removal from secondary sewage and septage using sand media amended with biochar in constructed wetland mesocosms Science of The Total Environment Vols 569–570, Pages 123-133 Ramesh R.K., Ronald D.D., 2008 Biogeochemistry of Wetlands: Science and Applications Ryan J., Ibrikci H., Delgado A., Torrent J., Sommer R., Rashid A., (2012) Significance of Phosphorus for Agriculture and the Environment in the West Asia and North Africa Region Advances in Agronomy Pages 91–153 Sathasivan A., 2009 Biological phosphorus removal processes for wastewater treatment Water and wastewater treatment technologies Oxford (UK): Encyclopedia of Life Support Systems (EOLSS) Pages 1-23 Sathasivan A., 2008 Biological Phosphorus Removal Processes for Wastewater Treatment, Water and Wastewater Treatment Technologies - Encyclopedia of Life Support Systems (EOLSS) 82 Shan B., Ao L., Hu C., Song J., 2011 Effectiveness of vegetation on phosphorus removal from reclaimed water by a subsurface flow wetland in a coastal area Journal of Environmental Sciences Vol 23(10) Pages 1594–1599 Salman J.M., Njoku V.O., Hameed B.H., 2011 Adsorption of pesticides from aqueous solution onto banana stalk activated carbon Chemical Engineering Journal Vol 174(1) Pages 41–48 Singh H., 2014 Removal of methylene blue using lemongrass ash as an adsorbent Carbon Lett Vol 15 Pages 105–112 Saleena M., Maya R., Manjusha K.P., Dhanya P.R., 2019 Fish and Fishery Products Analysis: A Theoretical and Practical Perspective Springer Nature Safaa M.R., 2013 Phosphate removal from aqueous solution using slag and fly ash International Journal of Environmental Analytical Chemistry Vol Pages 270-275 Sommer S.G., Petersen S.O., Møller H.B., 2004 Algorithms for calculating methane and nitrous oxide emissions from manure management Nutrient Cycling in Agroecosystems Vol 69 Pages 143 - 154 Saat S.K.M., 2017 Suitability of Ipomoea aquatica for the treatment of effluent from palm oil mill Journal of Built Environment Technology and Engineering Vol Pages 39–44 Subbarayan S., Sivaranjani S., 2019 Assessing Coastal Aquifer to Seawater Intrusion: Application of the GALDIT Method to the Cuddalore Aquifer, India Coastal Zone Management Source structure of Vietnam Electricity System, 2015 Electricity Regulatory Authority of Vietnam (ERAV) Stottmeister U., Wießner A., Kuschk P., Kappelmeyer U., Kästner M., Bederski O., Moormann H., 2003 Effects of plants and microorganisms in constructed wetlands for wastewater treatment Biotechnology Advances Vol 22(1-2) Pages 93–117 83 Stottmeister U., Wieòner A., Kuschk P., Kappelmeyer U., Kaăstner M., Bederski O., Muăller R.A., 2003 Moormann H Effects of plants and microorganisms in constructed wetlands for wastewater treatment Biotechnology Advances Vol 22 Pages 93 – 117 Shiqiu Z., Yang X., Le L., Zheng K., Ju M., Liu J., 2019 Bisphenol S Adsorption Behavior on Ferralsol and Biochar Modified Soil with Dissolved Organic Matter International Journal of Environmental Research and Public Health Vol 16 (5) Pages 764 Terra L., Dan D., 2009 Lemongrass in the garden Utah State University Thongtha S., Teamkao P., Boonapatcharoen N., Tripetchkul S., Techkarnjararuk S., Thiravetyan, P., 2014 Phosphorus removal from domestic wastewater by Nelumbo nucifera Gaertn and Cyperus alternifolius L Journal of Environmental Management Vol 137 Pages 54–60 Tambone F., Terruzzi L., Scaglia B., Adani F., 2015 Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties Waste Management Vol 35 Pages 55–61 Training manual for operators of wastewater stabilization lagoons State of Michigan Department of Natural Resources and Environment, 2010 Tabor N.J., Michel L.A., 2017 Sedimentologist's Guide for Recognition, Description, and Classification of Paleosols Terrestrial Depositional Systems USAID, 1980 Priorities for alleviating: Soil-related constraints to food production in the tropics Other USAID Supported Study/Document, 1980 Vymazal J., 2007 Removal of Nutrients in Various Types of Constructed Wetlands Science of the Total Environment Vol 380, pages 48-65 Vymazal J., and Kröpfelová L., 2008 Wastewater Treatment in Constructed Wetlands with Horizontal Sub-Surface Flow Springer, Dordrecht 84 Vymazal J., Greenway M., Tonderski K., Brix H., Mander Ü., 2010 Constructed Wetlands for Wastewater Treatment Vu T.T., 2019 Study on potential plants for use in constructed wetland to strengthen phosphorus removal from swine wastewater (Master thesis) Vietnam Japan University Hanoi National University Xiao L., Jiang H., Shen C., Li K., Hu L., 2019 Role of different plants on nitrogen and phosphorus removal at low temperature in lab-scale constructed wetlands E3S Web of Conferences, 118, 01023 White S.A., Taylor M.D., Albano J.P., Whitwell T., Klaine S.J., 2011 Phosphorus retention in lab and field-scale subsurface-flow wetlands treating plant nursery runoff Ecological Engineering Vol 37(12) Pages 1968–1976 White A.S., 2013 Wetland Technologies for Nursery and Greenhouse Compliance with Nutrient Regulations American society for horticultural science Vol 48 Pages 1103–1108 Wu H., Zhang J., Ngo H H., Guo W., Hu Z., Liang S., Liu H., 2015 A review on the sustainability of constructed wetlands for wastewater treatment: design and operation Bioresource technology Vol 175 Pages 594-601 Zhang S., Sun W., Jiao W., Qiu L., Zhong J., Li Y., 2018 Research on System Optimizing of AAO-BAF Wastewater Treatment Process E3S Web of Conferences Vol 53, 04028 Zheng Y., Wang X.C., Ge Y., Dzakpasu M., Zhao Y., Xiong J., 2015 Effects of annual harvesting on plants growth and nutrients removal in surface-flow constructed wetlands in northwestern China Ecological Engineering Vol 83 Pages 268–275 Zhu G., Wang S., Wang W., Wang Y., Zhou L., Jiang B., 2013 Hotspots of anaerobic ammonium oxidation at land-freshwater interfaces Nature Geoscience Vol 6:103–7 85 Yang Y., Zhao Y., Liu R., Morgan, D., 2018 Global development of various emerged substrates utilized in constructed wetlands Bioresource technology Vol 261 Pages 441-452 Vietnamese documents Bùi T.K, 2014 Hiệu xử lý nước thải sinh hoạt hệ thống đất ngập nước kiến tạo rau nghễ Khoa học công nghệ, số 14, 19-22 Đỗ K.U, Đặng K.C., 2008 Tình trạng khan Photpho cần thiết việc tái sử dụng nguồn thải chứa photpho Tạp chí Khoa học Phát triển Tập VI, Số 6: 570-577 Hồ B.L., Lê T.H., Đoàn D.A., Nguyễn Đ.N.D, Vương MM.H, Lê T.D.H., 2016 Hiệu xử lý nước thải sau biogas hệ thống đất ngập nước kiến tạo thị xã Tân Un, Bình Dương Tạp chí Khoa học Đại học Thủ Dầu Một Số 5(30), 25-33 Kiều C.T., Nguyễn Đ.Q., 2011 “Tình hình phương hướng tái chế, sử dụng tro xỉ Nhà máy Nhiệt điện Việt Nam” Hội thảo Tận thu thạch cao, Hội VLXD Việt Nam Lê H.V., Lưu T.N.Y., Võ T.Đ.N., Nguyễn V.C.N., 2017 Xử lý nước thải t hầm ủ biogas ao thâm canh tảo Spirulina sp Tap⺁ ch Khoa hoc⺁ Trư嗀 ng Đaị hoc⺁ Cần Thơ, Tập 49, Phần A, 1-10 Lê T.M., 2010 Sự đa dạng dinh dưỡng rau muống hạt điều kiện gieo trồng nuôi dưỡng heo thịt nông hộ đồng sơng Cửu Long Tạp chí Khoa học trư嗀ng Đại học Cần Thơ 2010 Số 14 Trang 146-150 Nguyễn H.C, Trần M.H., 2010 Nghiên cứu xử lý nước thải chăn nuôi lợn sau Biogas phương pháp lọc sinh học nhỏ giọt Hội nghị Khoa học kỉ niệm 35 năm Viện Khoa học Công nghệ Việt Nam 86 Nguyễn T.H., Phạm K.L., 2012 Đánh giá hiệu xử lý nước thải chăn nuôi lợn hầm biogas quy mô hộ gia đình Th a Thiên Huế Tạp chí Khoa học, Đại học Huế, tập 73, số 4, 83-91 Nguyễn T.K.H., 2017b Nghiên cứu xử lý BOD, COD, N-NH4+ , TP nước thải chăn nuôi heo sau hầm biogas công nghệ AAO sử dụng giá thể xơ d a Báo cáo nghiên cứu khoa học trư嗀ng Đại học Sài Gòn Nguyễn T.L.H., 2015a Nghiên cứu sử dụng xỉ than nhà máy nhiệt điện mông dương làm chất hệ thống đất ngập nước nhân tạo để xử lý nước thải sinh hoạt Luận văn Thạc sĩ Trư嗀ng Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội Nguyễn T.L., Võ T.C.T., Nguyễn T.L., Đặng C.T., Phùng T.H., Nguyễn V.C.N., 2015b Đánh giá hiệu xử lý nước thải sinh hoạt số loại thủy sinh thực vật Tạp chí Khoa học Trư嗀ng Đại học Cần Thơ Số chuyên đề: Môi trư嗀ng Biến đổi khí hậu: 119-128 Nguyễn T.L., 2011a Điều tra thành phần loài, đặc điểm sinh trưởng phân bố thực vật thủy sinh bậc cao số hồ thành phố Đà Nẵng Luận văn Thạc sỹ khoa học, Trư嗀ng Đại học Đà Nẵng Nguyễn T.T., 2015c Ứng dụng polyme thân thiện môi trư嗀ng ccanh tác nông, lâm nghiệp khu vực Tây Nguyên Viện Hàn lâm khoa học Cơng nghệ Việt Nam Chương trình KHCN trọng điểm cấp nhà nước KHCN-TN3/11-15 Nguyễn V.C., 2016a Nghiên cứu ứng dụng siêu âm diệt khuẩn tảo môi trư嗀ng nước (Luận văn thạc sỹ) Trư嗀ng Đại học Khoa học, Đại học Huế Nguyễn X.T., Vũ Đ.T., 2011b Bài giảng: Quản lý chất thải chăn nuôi, 2011 Nhà xuất Nông Nghiệp Nguyễn S., 2016b Nghiên cứu xử lý nước thải chăn nuôi phương pháp sinh học kết hợp lọc màng (Luận án tiến sỹ) Trư嗀ng Đại học Khoa học Tự nhiên Đại học Quốc gia Hà Nội 87 Phan H.D.Q, 2008 Phân tích việc sử dụng tro xỉ than thải t Nhà máy nhiệt điện Việt Nam Viện Khoa học Công nghệ, Đai học Tokyo, Nhật Bản Paul T., Trần T.V., Elise P., 2008 Hướng dẫn kỹ thuật trồng cỏ Vetiver giảm nhẹ thiên tai, bảo vệ môi trư嗀ng Nhà xuất Nông nghiệp Phạm T.M.H, Trần H.C., Trần T.D., 2017 Nghiên cứu khả hấp phụ As(V) môi trư嗀ng nước bã bùn đỏ Tây Nguyên sau tách loại hoàn toàn nhơm thành phần tan kiềm Tạp chí Khoa học ĐHQGHN: Các Khoa học Trái đất Môi trư嗀ng Tập 33 Số Trang 26-35 Trần Đ.B., Dương T.H., Nguyễn T.L.H., Lê N.H., Doãn H.S., Bùi T.H., Phạm Q.A., 2017 Những lồi có giá trị làm thuốc thuộc chi khoai lang (Ipomoea L.) - Họ bìm bìm (Convolvulaceae Juss) Việt Nam Hội nghị khoa học toàn quốc sinh thái tài nguyên sinh vật lần thứ Trương H.Đ., Nguyễn P.D., Bùi T.T , 2012 Sự phân bố thủy sinh thực vật bậc cao thủy vực ô nhiễm hữu vào mùa mưa thành phố Cần Thơ Tạp chí Khoa học 2012:23a 283-293 Trư嗀ng Đại học Cần Thơ Trương T.C., 2010 Nghiên cứu xử lý nước thải chăn nuôi công nghệ sinh học kết hợp lọc bùn dòng ngược Science & Technology Development, Vol 13, No.M1-2010 Vũ T.K.N., 2012 Nghiên cứu đề xuất mơ hình đất ngập nước nhân tạo cải thiện môi trư嗀ng tạo cảnh quan khu vực chùa cầu, thành phố Hội An Khóa luận tốt nghiệp, Đại học Đà Nẵng trư嗀ng Đại học sư phạm khoa sinh – môi trư嗀ng Internet documents [1] http://nhachannuoi.vn/thong-ke-chan-nuoi-lon-1-4-2019-tai-viet-nam/ [2]https://english.vietnamnet.vn/fms/environment/159037/pig-farms-of-cp-group-po lluting-buoi-river.html [3]http://iasvn.org/homepage/Nghien-cuu-xu-ly-nuoc-thai-chan-nuoi-lon-sau-biogas -bang-phuong-phap-loc-sinh-hoc-nho-giot-2286.html 88 APPENDICES: THESIS RESEARCH ACTIVITIES a) Raw Ferralsols b) Preparing for large-scale calcination a) Gas used for commerical furnance b) Transporting raw materials Appendix Ferralsols calcination 89 a) Water spinach after days seeding b) Water spinach after days seeding a) Lemon grass at the first period of growing b) Lemon grass after days Appendix Preparing wetland plants 90 a) Filtering the solution after adsorption b) Calculation P concentration b) Determining P concentration in effluent of CWs Appendix Adsorption experiments in the MEE lab 91 VIETNAM NATIONAL UNIVERSITY, HANOI SOCIALIST REPUBLIC OF VIETNAM VIETNAM JAPAN UNIVERSITY Independence - Freedom –Happiness Hanoi, date 20 month year 2020 CONFIRMATION OF THE MASTER’S THESIS REVISION Full name: Le Thi Van Student ID: 18110082 Date of birth: 24 / 09 / 1995 Place of birth: Nghe An Master’s programs in: Environmental Engineering Title of thesis: Intensified phosphorus removal from synthetic wastewater by lab-scale horizontal sub-surface flow constructed wetlands using a mixture of coal slag and calcined ferralsols as substrate Date of defense: Based on the recommendation of the Master’s thesis evaluation committee, the thesis has been revised as follows: Revised the spelling and printing errors of this thesis Added the accuracy for the data in diagram Improved the literature review chapter CONFIRMATION OF SUPERVISOR SIGNATURE OF STUDENT CONFIRMATION OF MASTER’S THESIS EVALUATION COMMITTEE 92 ... phosphorus removal from synthetic wastewater by lab- scale horizontal sub- surface flow constructed wetlands using a mixture of coal slag and calcined ferralsols as substrate? ?? was carried out with the...VIETNAM NATIONAL UNIVERSITY, HANOI VIETNAM JAPAN UNIVERSITY LE THI VAN INTENSIFIED PHOSPHORUS REMOVAL FROM SYNTHETIC WASTEWATER BY LAB- SCALE HORIZONTAL SUB- SURFACE FLOW CONSTRUCTED WETLANDS USING. .. P of sand However, P removal capacity of sand compared to other natural materials such as limestone and seashells is lower 25 1.4.2 Plants a Water spinach (Aquatica ipomoea) Aquatica ipomoea