1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nghiên cứu một số loại tấn công chữ ký số

62 31 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 62
Dung lượng 686,62 KB

Nội dung

MỤC LỤC GIỚI THIỆU Chương MỘT SỐ KHÁI NIỆM CƠ BẢN 1.1 CÁC KHÁI NIỆM TRONG TOÁN HỌC 1.1.1 Một số khái niệm số học 1.1.1.1 Số nguyên tố 1.1.1.2 Ước số bội số 1.1.1.3 Ước số chung bội số chung 1.1.1.4 Số nguyên tố 1.1.1.5 Khái niệm Đồng dư 1.1.2 Một số khái niệm đại số 1.1.2.1 Nhóm 1.1.2.2 Nhóm nhóm (G, *) 1.1.2.3 Nhóm Cyclic 1.1.2.4 Tập thặng dư thu gọn theo modulo 10 1.1.2.5 Phần tử nghịch đảo phép nhân 10 1.1.3 Độ phức tạp thuật toán 11 1.1.3.1 Khái niệm toán 11 1.1.3.2 Khái niệm thuật toán 11 1.1.3.3 Khái niệm Độ phức tạp thuật toán 11 1.1.3.4 Khái niệm “dẫn được” 13 1.1.3.5 Khái niệm khó tương đương 13 1.1.3.6 Lớp toán P, NP 13 1.1.3.7 Lớp toán NP-hard 14 1.1.3.8 Lớp toán NP-Complete 14 1.1.3.9 Hàm phía hàm cửa sập phía 14 1.2 VẤN ĐỀ MÃ HÓA DỮ LIỆU 15 1.2.1 Khái niệm Mã hóa 15 1.2.2 Phân loại mã hóa 16 1.2.2.1 Hệ mã hóa khóa đối xứng 16 1.2.2.2 Hệ mã hóa khóa cơng khai 17 1.3 VẤN ĐỀ CHỮ KÝ SỐ 19 1.3.1 Khái niệm “chữ ký số” 19 1.3.1.1 Giới thiệu “chữ ký số” 19 1.3.1.2 Sơ đồ “chữ ký số” 20 1.3.2 Phân loại “chữ ký số” 21 1.3.2.1 Phân loại chữ ký theo đặc trưng kiểm tra chữ ký 21 1.3.2.2 Phân loại chữ ký theo mức an toàn 21 1.3.2.3 Phân loại chữ ký theo ứng dụng đặc trưng 21 1.4 MỘT SỐ BÀI TOÁN QUAN TRỌNG TRONG MẬT MÃ 22 1.4.1 Bài toán kiểm tra số nguyên tố lớn 22 1.4.2 Bài tốn phân tích thành thừa số nguyên tố 27 1.4.3 Bài tốn tính logarit rời rạc theo modulo 30 Chương TẤN CÔNG CHỮ KÝ SỐ 32 2.1 TẤN CÔNG CHỮ KÝ RSA 32 2.1.1 Chữ ký RSA 32 2.1.1.1 Sơ đồ chữ ký 32 2.1.1.2 Ví dụ 32 2.1.2 Các dạng công vào chữ ký RSA 33 2.1.2.1 Tấn cơng dạng 1: Tìm cách xác định khóa bí mật 33 2.1.2.2 Tấn cơng dạng 2: Giả mạo chữ ký (khơng tính trực tiếp khóa bí mật) .42 2.2 TẤN CƠNG CHỮ KÝ ELGAMAL 44 2.2.1 Chữ ký Elgamal 44 2.2.1.1 Sơ đồ chữ ký 44 2.2.1.2 Ví dụ 45 2.2.2 Các dạng công vào chữ ký Elgamal 46 2.2.2.1 Tìm cách xác định khóa bí mật 46 2.2.2.2 Giả mạo chữ ký (khơng tính trực tiếp khóa bí mật) 47 2.3 TẤN CÔNG CHỮ KÝ DSS 49 2.3.1 Chữ ký DSS 49 2.3.1.1 Sơ đồ chữ ký DSS 49 2.3.1.2 Ví dụ 50 KẾT LUẬN 52 BẢNG CHỮ VIẾT TẮT 53 TÀI LIỆU THAM KHẢO 54 GIỚI THIỆU Con người ln có nhu cầu trao đổi thơng tin với Nhu cầu tăng cao công nghệ đời đáp ứng cho việc trao đổi thông tin ngày nhanh Chúng ta không quên việc máy điện thoại đời bước tiến vượt bậc việc rút ngắn khoảng cách đáng kể thời gian không gian hai bên muốn trao đổi thông tin Những thư hay điện tín gửi nhanh phương tiện truyền thông phát triển Đặc biệt từ Internet xuất hiện, dường yêu cầu trao đổi thông tin đáp ứng ấn phím “send” Sẽ cịn nhiều tiện ích mà cơng nghệ đem lại cho lĩnh vực Kinh tế-Văn hóa-Giáo dục-Y tế Ích lợi Internet mang lại xã hội vô cùng, khơng kể đến mặt trái người sử dụng với mục đích khơng tốt Vì mà thơng tin quan trọng truyền mạng hợp đồng ký kết, văn kiện mang tính bảo mật vấn đề quan tâm có truyền an tồn hay khơng? Do để chống lại cơng hay giả mạo, nảy sinh u cầu cần phải làm cho văn gửi “khơng nhìn thấy”, khơng thể giả mạo văn bản, dù có xâm nhập vào văn Nhu cầu ngày đáp ứng cơng nghệ mã hóa chữ ký số đời Với cơng nghệ này, trợ giúp người giải toán nan giải bảo mật trao đổi thông tin Cùng với phát triển mật mã khóa cơng khai, người ta nghiên cứu đưa nhiều phương pháp, nhiều kỹ thuật ký chữ ký số ứng dụng hoạt động kinh tế, xã hội Chẳng hạn ứng dụng thương mại điện tử, giao dịch chủ tài khoản ngân hàng, ứng dụng phủ điện tử địi hỏi việc xác nhận danh tính phải đảm bảo Ngày chữ ký số sử dụng nhiều lĩnh vực kinh tế với việc trao đổi hợp đồng đối tác kinh doanh, xã hội bỏ phiếu kín tiến hành bầu cử từ xa, hay thi phạm vi rộng lớn Một số chữ ký xây dựng là: chữ ký RSA, chữ ký ELGAMAL, chữ ký DSS, chữ ký RABIN Mặc dù chữ ký số cịn nhiều hạn chế kích thước chữ ký, hay khả chống giả mạo chưa cao khả mà đem lại hữu ích RSA (Rivest-Shamir-Adleman): năm 1977, R.1 Rivest, A Shamir L.M Adleman đề xuất hệ mật mã khóa cơng khai mà độ an tồn hệ dựa vào tốn khó “phân tích số ngun thành thừa số nguyên tố”, hệ trở thành hệ tiếng mang tên hệ RSA ELGAMAL: hệ mật mã ElGamal T ElGamal đề xuất năm 1985, độ an toàn hệ dựa vào độ phức tạp tốn tính logarit rời rạc DSS (Digital Signature Standard) đề xuất từ năm 1991 chấp nhận vào cuối năm 1994 để sử dụng số lĩnh vực giao dịch điện tử Hoa Kỳ DSS dựa vào sơ đồ chữ ký ElGamal với vài sửa đổi RABIN: hệ mã hóa khóa cơng khai M.O Rabin đề xuất năm 1977, độ an toàn hệ dựa vào tốn khó “phân tích số nguyên thành thừa số nguyên tố” Khi nói đến chữ ký điện tử, lấy mục tiêu an toàn lên hàng đầu Một chữ ký điện tử thực áp dụng thực tế chứng minh khơng thể giả mạo Mục tiêu lớn kẻ công sơ đồ chữ ký giả mạo chữ ký, điều có nghĩa kẻ cơng sinh chữ ký người ký lên thông điệp, mà chữ ký chấp nhận người xác nhận Trong thực tế hành vi công chữ ký điện tử đa dạng Đó vấn đề nghiên cứu luận văn “Nghiên cứu số loại công chữ ký số” Nội dung luận văn bao gồm chương: Chương 1: Một số khái niệm Chương 2: Tấn công chữ ký số Chương MỘT SỐ KHÁI NIỆM CƠ BẢN 1.1 CÁC KHÁI NIỆM TRONG TOÁN HỌC 1.1.1 Một số khái niệm số học 1.1.1.1 Số nguyên tố 1/ Khái niệm Số nguyên tố số tự nhiên lớn có hai ước 2/ Ví dụ: Các số 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 số nguyên tố Số số nguyên tố chẵn Số nguyên tố có vai trò ý nghĩa to lớn số học lý thuyết mật mã Bài tốn kiểm tra tính nguyên tố số nguyên dương n phân tích số n thừa số nguyên tố tốn quan tâm Ví dụ: 10 số nguyên tố lớn tìm thấy [33] rank Prime 32582657 2 30402457 25964951 - 24036583 - 20996011 - 213466917 19249 27653 28433 10 33661 1.1.1.2 Ước số bội số 1/ Khái niệm Cho hai số nguyên a b, b Nếu có số nguyên q cho a = b*q, ta nói a chia hết cho b, kí hiệu b\a Ta nói b ước a, a bội b 2/ Ví dụ: Cho a = 6, b = 2, ta có = 2*3, ký hiệu 2\6 Ở ước bội Cho số nguyên a, b 0, tồn cặp số nguyên (q, r) (0 r < /b/) cho a = b*q + r Khi q gọi thương nguyên, r gọi số dư phép chia a cho b Nếu r = ta có phép chia hết Ví dụ: Cho a = 13, b = 5, ta có 13 = 5*2 + Ở thương q = 2, số dư r = 1.1.1.3 Ước số chung bội số chung 1/ Khái niệm Số nguyên d gọi ước chung số n ước tất số Số nguyên m gọi bội chung số n bội tất số Một ước chung d > số nguyên a1 , a2 , a1 , a2 , , an ước d, a1 , a2 , , an Ký hiệu d = gcd ( a1 , a2 , , an ) hay d = UCLN( a1 , a2 , , an ) Một bội chung m > số nguyên a1 , a2 , a1 , a2 , , an bội m, a1 , a2 , , an Ký hiệu m = lcm( a 2/ Ví dụ: Cho a = 12, b = 15, gcd(12, 15) = 3, 1.1.1.4 Số nguyên tố 1/ Khái niệm Nếu gcd( a1 , a2 , , an ) = 1, số a1 , a2 , , an gọi nguyên tố 2/ Ví dụ: Hai số 13 nguyên tố nhau, gcd(8, 13) = 1.1.1.5 Khái niệm Đồng dư 1/ Khái niệm Cho hai số nguyên a, b, m (m > 0) Ta nói a b “đồng dư” với theo modulo m, chia a b cho m, ta nhận số dư Ký hiệu: a b (mod m) 2/ Ví dụ: 17 (mod 3) chia 17 cho 3, số dư 1.1.2 Một số khái niệm đại số 1.1.2.1 Nhóm 1/ Khái niệm Nhóm bội (G, *), G , * phép tốn hai ngơi G thỏa mãn ba tính chất sau: + Phép tốn có tính kết hợp: (x*y)*z = x*(y*z) + Có phần tử trung lập e + Với x G: x*e = e*x = x G, có phần tử nghịch đảo x‟ với x, y, z với x G G G: x*x‟ = x‟*x = e Cấp nhóm G hiểu số phần tử nhóm, ký hiệu |G| Cấp nhóm G có vơ hạn phần tử Nhóm Abel nhóm (G, *), phép tốn hai ngơi * có tính giao hốn Tính chất: Nếu a*b = a*c, b = c Nếu a*c = b*c, a = b 2/ Ví dụ: * Tập hợp số nguyên Z với phép cộng (+) thông thường nhóm giao hốn, có phần tử đơn vị số Gọi nhóm cộng số nguyên * Tập Q * số hữu tỷ khác (hay tập R * số thực khác 0), với phép nhân (*) thơng thường nhóm giao hốn Gọi nhóm nhân số hữu tỷ (số thực) khác * Tập vectơ khơng gian với phép tốn cộng vectơ nhóm giao hốn 1.1.2.2 Nhóm nhóm (G, *) 1/ Khái niệm Nhóm G tập S G, S , thỏa mãn tính chất sau: + Phần tử trung lập e G nằm S + S khép kín phép tính (*) G, tức x*y S với x, y + S khép kín phép lấy nghịch đảo G, tức x S với x S S 1.1.2.3 Nhóm Cyclic 1/ Khái niệm Nhóm (G, *) gọi Nhóm Cyclic sinh phần tử Tức có phần tử g G mà với a G, tồn n N để g n =g*g* *g = a (Chú ý g*g* *g g*g với n lần) Nói cách khác: G gọi Nhóm Cyclic tồn g G cho phần tử G lũy thừa ngun g 2/ Ví dụ: Nhóm (Z , +) gồm số nguyên dương Cyclic với phần tử sinh g = 1.1.2.4 Tập thặng dư thu gọn theo modulo 1/ Khái niệm Kí hiệu Z n = {0, 1, 2, , n-1} tập số nguyên không âm < n Zn phép cộng (+) lập thành nhóm Cyclic có phần tử sinh 1, phần tử t e = (Z n , +) gọi nhóm cộng, nhóm hữu hạn có cấp n Kí hiệu Z * = {x Z Z * gọi Tập thặng dư thu gọn theo mod n, có số phần tử (n) n Z * với phép nhân mod n lập thành nhóm (nhóm nhân), phần tử trung n * Tổng quát (Z , phép nhân mod n) nhóm Cyclic Nhóm nhân Z * 2/ Ví dụ: Cho n = 21, Z * 1.1.2.5 Phần tử nghịch đảo phép nhân 1/ Khái niệm Cho a nghịch đảo a Z n Một phần tử có phần tử nghịch đảo, gọi khả nghịch 2/ Ví dụ: Tìm phần tử nghịch đảo Z Tức phải giải phương trình x Vì t = V = -2 < x = a := + n = -2 + = Vậy phần tử nghịch đảo Z 2.1.2.2 Tấn công dạng 2: Giả mạo chữ ký (khơng tính trực tiếp khóa bí mật) 1/ Ký trước, Mã hóa sau Người gửi G gửi tài liệu x chữ ký y đến người nhận N, G ký trước vào x chữ ký y = SigG (x) , sau mã hóa x y nhận Z eG (x, y) G gửi z cho N H lấy trộm thông tin truyền từ G đến N Để cơng x, H tìm cách giải mã thơng tin lấy Để công vào chữ ký thay chữ ký (giải mạo), H tìm cách giải mã Z, nhận y Sau H thay y chữ ký giả mạo y‟, gửi đến N Tuy nhiên trường hợp H phải giải mã trước, sau giả mạo chữ ký Giải pháp phòng tránh: chọn số lập mã giải mã số ngun lớn, có kích cỡ lớn gần thân số n 2/ Mã hóa trước, Ký sau x Người gửi G gửi tài liệu x chữ ký y đến người nhận N, G mã hóa trước u eG (x) , sau ký vào u chữ ký v G gửi (u, v) cho N SigG (u) H lấy trộm thông tin đường truyền từ G đến N Để công x, H tìm cách giải mã thơng tin lấy Để công chữ ký v, H sẵn có v‟, H việc thay v v‟ H thay chữ ký v u, chữ ký (của H) v’ = SigH (u) , gửi (u, v’) đến N Khi nhận v’, N kiểm thử thấy sai, gửi phản hồi lại G G chứng minh chữ ký giả mạo G gửi chữ ký v cho N, trình truyền tin bị chậm lại Như trường hợp này, H giả mạo chữ ký mà khơng cần giải mã Giải pháp phòng tránh: Hãy ký trước, sau mã hóa chữ ký Chọn số lập mã giải mã số nguyên lớn, có kích cỡ lớn gần thân số n 42 3/ Kẻ cơng có khả kiểm tra chữ ký khác có phù hợp với thơng điệp có trước hay khơng Đây kiểu cơng thơng dụng thực tế thường chia làm lớp: - Kẻ cơng có chữ ký cho lớp thông điệp - Kẻ công dành chữ ký cho danh sách thông điệp trước tiến hành hoạt động phá hủy chữ ký, cách công non-adaptive (không mang tính phù hợp), thơng điệp chọn trước chữ ký gửi - Kẻ công phép sử dụng người ký bên đáng tin cậy, kẻ công u cầu chữ ký cho thơng điệp, mà thơng điệp phụ thuộc vào khóa cơng khai người ký Như kẻ cơng yêu cầu chữ ký thông điệp phụ thuộc vào chữ ký thông điệp dành trước qua tính tốn chữ ký Giải pháp phòng tránh: Sử dụng giải pháp phòng tránh trình bày với dạng cơng chữ ký Đây kiểu công thám mã chuyên nghiệp 43 2.2 TẤN CÔNG CHỮ KÝ ELGAMAL 2.2.1 Chữ ký Elgamal 2.2.1.1 Sơ đồ chữ ký 1/ Sơ đồ (Elgamal đề xuất năm 1985) * Tạo cặp khóa (bí mật, cơng khai) (a, h): Chọn số nguyên tố p cho tốn logrit rời rạc Z p “khó” giải Chọn phần tử ngun thủy g Chọn khóa bí mật a Định nghĩa tập khóa: Z *p Đặt P = Z *p , A = Z *p x Z p Z *p Tính khóa cơng khai h K = {(p, g, a, h): h g a mod p g a mod p} Các giá trị p, g, h cơng khai, phải giữ bí mật a Z *p * Ký số: Dùng khóa ký: khóa a khóa ngẫu nhiên bí mật r (Vì r Z *p , nên nguyên tố cùn Chữ ký x Trong * Kiểm tra chữ ký: Ver (x, k , ) = 2/ Chú ý: Nếu chữ ký tính đúng, kiểm thử thành cơng h * Do Chữ ký Elgamal thuộc loại chữ ký kèm thông điệp Tức người gửi chuyển “chữ ký”, phải gửi kèm thông điệp “ký” “chữ ký” Ngược lại, người nhận khơng có thơng điệp gốc 44 2.2.1.2 Ví dụ Chữ ký Elgamal liệu x = 112 * Tạo cặp khóa (bí mật, công khai) (a, h): Chọn số nguyên tố p = 463 Đặt P = Z *p , A = Z *p x Z p Chọn phần tử nguyên thủy g = Chọn khóa bí mật a = 211 Tính khóa cơng khai h Z *p Z *p g a mod p = 211 mod 463 = 249 g a mod p} Định nghĩa tập khóa: K = {(p, g, a, h): h Các giá trị p, g, h công khai, phải giữ bí mật a * Ký số: Chọn ngẫu nhiên bí mật r = 235 Z *p Khóa ký (a, r) Z * , nên nguyên tố p-1, tồn r mod (p-1) Cụ thể: Vì r p Chữ ký liệu x = 112 ( , ) = (16, 108), đó: = g r mod p = 235 mod 463 = 16 = (x – a* )* r mod (p-1) = (112 – 211 * 16) * 289 mod 462 = 108 * Kiểm tra chữ ký: Verk (x, , ) = h * h * 24916 *16108 mod 463 132 g x mod p 2112 mod 463 132 Hai giá trị nhau, chữ ký 45 g x mod p 2.2.2 Các dạng công vào chữ ký Elgamal 2.2.2.1 Xác định khóa (tìm cách xác định khóa bí mật) 1/ Số ngẫu nhiên r bị lộ: Nếu r bị lộ, thám mã tính khóa mật a = (x – r ) mod( p 1) Giải pháp phòng tránh: Cần thận trọng việc sử dụng số ngẫu nhiên k, không để lộ số k dùng 2/ Dùng r cho hai lần ký khác nhau: Giả sử dùng r cho hai lần ký x1 ( , ) chữ ký x1 , Khi thám mã tính a sau: Do ta có Đặt tương đương với x2 x Đặt d = ( x' p' Khi đồng dư thức (1) trở thành: Vì r = x‟* + i*p‟ mod (p-1), với i giá trị đó, Thử với giá trị đó, ta tìm r Tiếp theo tính a trường hợp → Giải pháp phòng tránh: lần ký sử dụng số k khác 46 3/ Khóa mật a nhỏ Nếu khóa mật a q nhỏ, phương pháp dị tìm đơn giản, người ta tính Giải pháp phịng tránh: chọn khóa bí mật a số ngun lớn, có kích cỡ lớn gần thân số n 4/ Số ngẫu nhiên r nhỏ Tương tự khóa mật a, số ngẫu nhiên r phải bí mật Trong trường hợp tham số nhỏ, hiển nhiên phương pháp dị tìm đơn giản người ta tìm chúng Khi sơ đồ chữ ký an toàn Nếu r bị lộ, thám mã tính khóa mật a = (x – r ) mod( p 1) Giải pháp phòng tránh: chọn số ngẫu nhiên r số nguyên lớn, có kích cỡ lớn gần thân số n 2.2.2.2 Giả mạo chữ ký (khơng tính trực tiếp khóa bí mật) 1/ Trường hợp 1: Giả mạo chữ ký không với tài liệu ký + H cố gắng giả mạo chữ ký x, mà khơng biết khóa bí mật a Như vậy, H phải tính * Nếu chọn trước Tức * Nếu chọn trước Hiện chưa có cách hữu hiệu trường hợp trên, đốn khó tốn logarit rời rạc Có thể có cách tính * Nếu chọn trước gx Ta có h * Như 47 2/ Trường hợp 2: Giả mạo chữ ký với tài liệu ký H ký tài liệu ngẫu nhiên cách chọn trước đồng thời x, Cách * Chọn x, Chọn số nguyên i, j cho i, j g i h j mod j1 Trong * Chứng minh h (g i h j ) h j mod p Cách * Nếu ( , ) chữ ký tài liệu x có từ trước, giả mạo chữ ký tài liệu x‟ khác + Chọn số ngẫu nhiên k, i, j thỏa mãn k x' gihj (kx i * ( , ) chữ ký g x ' mod p h Chú ý Cả hai cách giả mạo nói cho chữ ký tài liệu tương đương, khơng phải tài liệu chọn theo ý người giả mạo Tài liệu tính sau tính chữ ký, giả mạo loại thực tế khơng có ý nghĩa nhiều 48 2.3 TẤN CƠNG CHỮ KÝ DSS 2.3.1 Chữ ký DSS 2.3.1.1 Sơ đồ chữ ký DSS 1/ Giới thiệu chuẩn chữ ký số DSS Chuẩn chữ ký số (DSS: Digital Signature Standard) đề xuất năm 1991, cải biên sơ đồ chữ ký Elgamal, chấp nhận chuẩn vào năm 1994 để dùng số lĩnh vực giao dịch USA Thơng thường tài liệu số mã hóa giải mã 1lần Nhưng chữ ký lại liên quan đến pháp luật, chữ ký phải kiểm thử sau nhiều năm ký Do chữ ký phải bảo vệ cẩn thận Như số nguyên tố p phải đủ lớn (chẳng hạn dài cỡ 512 bit) để bảo đảm an tồn, nhiều người đề nghị phải dài 1024 bit Tuy nhiên, độ dài chữ ký theo sơ đồ Elgamal gấp đối số bít p, p dài 512 bít độ dài chữ ký 1024 bit Trong ứng dụng dùng thẻ thơng minh (Smart card) lại mong muốn có chữ ký ngắn, nên giải pháp sửa đổi mặt dùng p với độ dài từ 512 bit đến 1024 bit (bội 64), mặt khác chữ ký ( , ), số , có độ dài biểu diễn ngắn, ví dụ 160 bit Khi chữ ký 320 bit Điều thực cách dùng nhóm cyclic Z q* Z *p thay cho Z *p , tính tốn thực Z *p , thành phần chữ ký lại thuộc Z q* Thay đổi cơng thức tính Điều kiện kiểm thử h a x* ** Nếu (x + g * 49 2/ Sơ đồ chữ ký DSS Sơ đồ * Tạo cặp khóa (bí mật, công khai) (a, h): + Chọn số nguyên tố p cho toán logarit rời rạc Chọn q ước nguyên tố p-1 Tức p-1 = t * q (Số nguyên tố p cỡ 512 bit, q cỡ 160 bit) + Chọn g Tính + Đặt P = Z q* , A = Z q* x Z q* , K = {(p, q, + Với khóa (p, q, * Ký số: Dùng khóa ký: khóa a khóa ngẫu nhiên bí mật r Chữ ký ( r (Chú ý r * Kiểm tra chữ ký: Ver k" 2.3.1.2 Ví dụ * Tạo cặp khóa (bí mật, cơng khai) (a, b): Chọn p = 7649, q = 239 ước nguyên tố p – 1, t = 32 Tức p-1 = t * q hay p = t * q + = 32 * q + = 32*239 + = 7649 Chọn g = Chọn khóa mật a = 85, khóa cơng khai * Ký số: Dùng khóa ký: a khóa ngẫu nhiên r = 58 Z q* , r + Chữ ký ( r (x mod p) mod q = ( 7098 a* 50 * Kiểm tra chữ ký: ( , ) = (115, 87) chữ ký ex * mod q = 1246 * 11 mod q = 83, Điều kiện kiểm thử ? ( e * he mod p) mod q (709883 * 538770 mod 7649) mod 239 Chú ý: 1) Liên quan tới tính tốn cụ thể sơ đồ: + Chú ý phải có (mod q) để bảo đảm có mod q điều kiện kiểm thử (tương đương UCLN( , p-1) = 1) Vì chọn r mà khơng điều kiện trên, phải chọn r khác để có Tuy nhiên khả (mod q) (mod q) 160 , điều không xảy + Một ý thay tính p trước tính q, ta tính q trước tìm p 2) Liên quan chung tới DSS (1991): + Độ dài cố định p 512 bit Nhiều người muốn p thay đổi lớn Vì NIST sửa đồi p có độ dài thay đổi, bội 64: từ 512 đến 1024 bit + Nếu dùng chữ ký RSA với thành phần kiểm thử chữ ký nhỏ, việc kiểm thử nhanh việc ký Đối với DSS, ngược lại, việc ký nhanh kiểm thử Điều dẫn đến vấn đề: Một tài liệu ký lần, lại kiểm thử nhiều lần, nên người ta muốn thuật toán kiểm thử nhanh Máy tính ký kiểm thử nào? Nhiều ứng dụng dùng thẻ thơng minh với khả có hạn, kết nối với máy tính mạnh hơn, nên xây dựng sơ đồ chữ ký liên quan đến thẻ Nhưng tình đặt thẻ thơng minh sinh chữ ký kiểm thử chữ ký, khó kết luận? NIST trả lời thời gian kiểm thử sinh chữ ký, nhanh không quan trọng, miễn đủ nhanh Chữ ký DSS thuộc loại chữ ký kèm thơng điệp Đó cải tiến chữ ký Elgamal Các dạng công vào DSS tương tự với chữ ký Elgamal 51 KẾT LUẬN Cùng với phát triển chung lồi người, cơng nghệ thông tin lĩnh vực đem lại nhiều lợi ích cho xã hội, trở thành yếu tố thiếu kinh tế hội nhập tồn cầu hóa xã hội lồi người Chính an tồn bảo mật thông tin yếu tố quan trọng, đảm bảo an toàn cho việc áp dụng nhiều ứng dụng thực tiễn, cho giao dịch điện tử Các giải pháp quyền điện tử, thương mại điện tử không thực khơng có sở an tồn thơng tin vững Một nhiệm vụ bảo đảm an tồn thơng tin bảo vệ chữ ký (cơng cụ xác thực quan trọng), đề tài nghiên cứu chữ ký số Cụ thể nghiên cứu khả công chữ ký, từ đưa giải pháp khắc phục, tránh cố giả mạo chữ ký Kết Đồ án tốt nghiệp tìm hiểu nghiên cứu qua tài liệu để hệ thống lại đề sau: 1/ Trình bày số khái niệm mã hóa liệu, chữ ký số 2/ Trình bày số khả cơng chữ ký số thám mã giải pháp phòng tránh Để hoàn thành luận văn, em nhận bảo, hướng dẫn tận tình thầy giáo PGS.TS Trịnh Nhật Tiến Tuy nhiên, luận văn không tránh khỏi thiếu sót, mong góp ý Thầy, Cô giáo bạn 52 BẢNG CHỮ VIẾT TẮT RSA (Rivest-Shamir-Adleman) ELGAMAL (T ElGamal) DSS (Digital Signature Standard) DES (Data Encryption Standard) USA (United States of America) NIST UCLN BCNN ATTT TT Smart card PT 53 TÀI LIỆU THAM KHẢO Phan Đình Diệu Lý thuyết mật mã An tồn thơng tin, 2004 TS Nguyễn Ngọc Cương (1999), Bài giảng An tồn hệ thống thơng tin PGS.TS Trịnh Nhật Tiến Bài giảng mơn An tồn liệu, 2005 Phạm Huy Điển, Hà Duy Khoái (2003), Mã hóa thơng tin: Cơ sở tốn học ứng dụng, nhà xuất Đại Học Quốc Gia Hà Nội Jalal Feghhi, Jalil Feghhi, Peter Williams Digital Certificates Applied Internet Security, 1999 S Castano, M Fugina, G Martella, P Samarati Database Security, 1994 Danley Harrisson “An Introduction to Steganography”, 2002 54 ... chữ ký theo đặc trưng kiểm tra chữ ký 1/ Chữ ký khôi phục thông điệp: Là loại chữ ký, người gửi cần gửi ? ?chữ ký? ?? , người nhận khơi phục lại thông điệp, ? ?ký? ?? ? ?chữ ký? ?? Ví dụ: Chữ ký RSA chữ ký khơi... số loại công chữ ký số? ?? Nội dung luận văn bao gồm chương: Chương 1: Một số khái niệm Chương 2: Tấn công chữ ký số Chương MỘT SỐ KHÁI NIỆM CƠ BẢN 1.1 CÁC KHÁI NIỆM TRONG TOÁN HỌC 1.1.1 Một số. .. Giới thiệu ? ?chữ ký số? ?? 19 1.3.1.2 Sơ đồ ? ?chữ ký số? ?? 20 1.3.2 Phân loại ? ?chữ ký số? ?? 21 1.3.2.1 Phân loại chữ ký theo đặc trưng kiểm tra chữ ký 21 1.3.2.2

Ngày đăng: 01/09/2020, 09:05

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
7. Danley Harrisson. “An Introduction to Steganography”, 2002 Sách, tạp chí
Tiêu đề: An Introduction to Steganography
1. Phan Đình Diệu. Lý thuyết mật mã và An toàn thông tin, 2004 Khác
2. TS. Nguyễn Ngọc Cương (1999), Bài giảng An toàn hệ thống thông tin Khác
3. PGS.TS. Trịnh Nhật Tiến. Bài giảng môn An toàn dữ liệu, 2005 Khác
4. Phạm Huy Điển, Hà Duy Khoái (2003), Mã hóa thông tin: Cơ sở toán học và ứng dụng, nhà xuất bản Đại Học Quốc Gia Hà Nội Khác
5. Jalal Feghhi, Jalil Feghhi, Peter Williams. Digital Certificates.Applied Internet Security, 1999 Khác
6. S. Castano, M. Fugina, G. Martella, P. Samarati. Database Security, 1994 Khác

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w