1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

Solution manual for precalculus 1st edition by miller

35 33 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 35
Dung lượng 1,65 MB

Nội dung

Solution Manual for Precalculus 1st Edition By Miller Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Section 1.1 Chapter Functions and Relations Section 1.1 The Rectangular Coordinate System and Graphing Utilities x +x y +y  b M =  ,     −4 + ( −2) 11+  = ,   2    −6 18  =  ,  = −3,9  2 origin quadrants d = (x − x1 ) + ( y2 − y1 ) 2  x + x y + y2  M =  ,    solution 0; y ( 12 a d = (x ) − x1 ) + ( y2 − y1 ) 2 = 3− ( −1)  +  −7 − ( −3)  = ( 4) + ( −4) 2 = 16 + 16 = 32 = x +x y +y  b M =  ,     3+ ( −1) −7 + ( −3)  = ,      − 10   = ,  = 1,− 2  ( 10 13 a d = (x − x1 ) + ( y2 − y1 ) 2 ) = 2 − ( −7)  + 5 − ( −4)  = ( 9) + ( 9) 2 = 81+ 81 = 162 = 11 a d = (x − x1 ) + ( y2 − y1 ) 2 =  −4 − ( −2)  + (11− 7) = ( −2) + ( 4) 2 = + 16 = 20 = 155 Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Solution Manual for Precalculus 1st Edition By Miller Full file Chapter at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Functions and Relations  x + x y + y2  b M =  ,     31.1+ 37.1 −32.7 + ( −24.7)  = ,    2    x + x y + y2  b M =  ,     + ( −7) + ( −4)  = ,   2    −5    =  ,  = − ,   2  2 14 a d = = =  68.2 −57.4  = = 34.1,− 28.7 ,   ( (x − x ) + (y − y ) ( −4 − 3) + ( −1− 6) ( −7) + ( 7) 2 2 17 a d = 2 = = = 49 + 49 = 98 = x +x y +y  b M =  ,     −4 + −1+  = ,    −1    =  ,  = − ,   2  2 15 a d = = = 2 2 = = − x1 ) + ( y2 − y1 ) ( 31.1− 37.1) ( −6) + ( −8) 2 = ( ) ) (x − x1 ) + ( y2 − y1 ) ( − 7) +  ( ) + ( 5) 2 ) ( ) − −3   2 ( +  −32.7 − ( −24.7)  = + 80 = 87  x + x y + y2  b M =  ,      + + −3   , =   2    −2    = , = ,−          7.4 −8.8  = = 3.7,− 4.4 ,   (x ( ) ( ) + ( −6 ) 2 =  x + x y + y2  b M =  ,     5.2 + 2.2 −6.4 + ( −2.4)  = ,    2   16 a d = − +  −7 − −    18 a d = ( − x1 ) + ( y2 − y1 ) ( 2 = 45 + 72 = 117  x + x y + y2  b M =  ,      + −7 + −   , =   2    5 −8   5  = , = ,−         (x − x ) + (y − y ) ( 5.2 − 2.2) + −6.4 − ( −2.4) ( 3) + ( 4) = + 16 = 25 = (x ) 2 = 36 + 64 = 100 = 10 19 d1 = ( 3− 1) + (1− 3) ) = 4+ = 2 156 Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Solution Manual for Precalculus 1st Edition By Miller Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Section 1.1 d2 = ( − 3) + ( −2 − 1) 2 22 d1 = = 9+ = d3 = (1− 0) 2 d2 = = 1+ 25 = 26 d12 + d22 = d32 = d3 = 26 2 ( 2) + ( 2) = ( 10) x2 + y = 4− 3= 1=  Yes x2 + y = b ( 4) + ( −17) = 2 16 − 17 = + 32 = 40 −1 = False 40 = 40  True No Yes 21 d1 =  − ( −2)  + ( − 4) = 49 + 16 = 65 2  1  3  2 +  4 =     + =1 4 1=  Yes 24 a x−3 − y = d3 =  −2 − ( −5)  + ( − 1) = 9+ = d12 + d32 = d22 2 ) x2 + y = c = 100 + = 101 ( 65) + (3 2) = ( (1) − − ( −2) = 2+ = 101 65 + 18 = 101 2 2 ( −2) + ( −3) = d3 = 1− ( −3)  + 2 − ( −2)  = 16 + 16 = d12 + d32 = d22 ( −5− 5) + (1− 0) + 2 − ( −2)  78 = 82 False No 23 a = 36 + = 10 d2 = 13+ 65 = 82 ( −3− 3) + ( −2 − 0) 2 2 = 4+ = 2 d2 = + 1− ( −2)  ( −6 − 1) Yes 2 ( 13) + ( 65) = ( 82) 26 = 26  True ( 3− 1) + ( − 2) ( 3− 1) = 49 + 16 = 65 d22 + d32 = d12 + 18 = 26 20 d1 = = + = 13 ( ) ( ) ( ) 2 = 81+ = 82 + 3 − ( −2)  2 + ( −6 − 3) + ( −1) 4=  Yes 83 = 101 False No 157 Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Solution Manual for Precalculus 1st Edition By Miller Full file Chapter at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Functions and Relations 26 x + ≠ x−3 − y = b ( −2) − − ( −3) = x ≠ −7 {x |x ≠ −7} 5+ = 27 x − 10 ≥ = False x ≥ 10 No {x |x ≥ 10} c x − − y = 28 x + 11 ≥ x ≥ −11  1  11   10  − −  − 10  =       11 10    − +  = 10  4 10    10  {x |x ≥ −11} 29 1.5 − x ≥ − x ≥ −1.5 x ≤ 1.5 1− 30 + 11 = 40 29 + 11 = 40 {x |x≤ 1.5} 40 = 40  Yes 25 x − ≠ 30 2.2 − x ≥ − x ≥ −2.2 x ≤ 2.2 x≠3 {x |x ≠ 3} {x |x ≤ 2.2} 31 y = x x y y=x −3 −3 y = −3 −2 −2 y = −2 −1 −1 y = −1 0 y=0 1 y =1 2 y=2 3 y=3 Ordered pair ( −3,− 3) ( −2,− 2) ( −1,− 1) ( 0,0) (1,1) ( 2,2) ( 3,3) 158 Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Solution Manual for Precalculus 1st Edition By Miller Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Section 1.1 32 y = x2 x y y = x2 −3 y = ( −3) = y = ( −2) = −1 y = ( −1) = 0 y = ( 0) = 1 y = (1) = y = ( 2) = y = ( 3) = x y y= x Ordered pair 0 y= 0=0 1 y = 1=1 y= 4=2 ( 0,0) (1,1) ( 4,2) 2 −2 2 2 Ordered i −3,9 ( ) ( −2,4) ( −1,1) ( 0,0) (1,1) ( 2,4) (3,9) 33 y = x 159 Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Solution Manual for Precalculus 1st Edition By Miller Full file Chapter at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Functions and Relations y= 9=3 x y y= x −3 y = −3 = −2 y = −2 = −1 y = −1 = 0 y= =0 1 y = =1 2 y= =2 3 y= 3=3 y y = x3 ( 9,3) 34 y = x Ordered pair ( −3,3) ( −2,2) ( −1,1) ( 0,0) (1,1) ( 2,2) ( 3,3) 35 y = x3 x Ordered pair 160 Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Solution Manual for Precalculus 1st Edition By Miller Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Section 1.1 −2 −8 y = ( −2) = −8 −1 −1 y = ( −1) = −1 0 y = ( 0) = 1 y = (1) = y = ( 2) = 36 y = 3 3 ( −2,− 8) ( −1,− 1) ( 0,0) (1,1) ( 2,8) x y −4 − −2 − −1 −1 − −2 2 1 x 1 y= =− ( −4) Ordered pair y= 1 =− ( −2) 1   −2,−    y= = −1 ( −1) ( −1,1) y= = −2  1  − 2      − ,− 2   y= =2  1  2   1   ,2   y= =1 (1) (1,1) y= x 1   −4,−    161 Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Solution Manual for Precalculus 1st Edition By Miller Full file Chapter at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Functions and Relations 2 y= 1 = ( 2) 4 y= 1 = ( 4)  1  2,2     1  4,4    37 y − x = y = x +2 x y y = x +2 −3 y = −3 + = −2 y = −2 + = −1 y = −1 + = y = + 2= y = 1+ 2= y = + 2= y = + 2= Ordered pair ( −3,5) ( −2,4) ( −1,3) ( 0,2) (1,3) ( 2,4) (3,5) 162 Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Solution Manual for Precalculus 1st Edition By Miller Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Section 1.1 38 x + y = y = 3− x x y y = 3− x −3 y = 3− −3 = −2 y = 3− −2 = −1 y = 3− −1 = y = 3− = y = 3− = 2 y = 3− = y = 3− = Ordered pair ( −3,0) ( −2,1) ( −1,2) ( 0,3) (1,2) ( 2,1) (3,0) 39 y − x − = y2 = x + y = ± x+ x y y = ± x+2 −2 y=± ( −2) + = ( −2,0) −1 ±1 y=± ( −1) + = ±1 ( −1,1) ,( −1,− 1) ±2 y=± ( 2) + = ±2 ( 2,2) ,( 2,− 2) Ordered pairs 163 Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Solution Manual for Precalculus 1st Edition By Miller Full file Chapter at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Functions and Relations y=± ±3 ( 7) + = ±3 ( 7,3) ,( 7,− 3) 40 y − x + = y2 = x − y = ± x −1 x y y = ± x −1 y=± (1) − = ±1 y=± ( 2) − = ±1 ±2 y=± ( 5) − = ±2 10 ±3 y=± (10) − = ±3 Ordered pairs (1,0) ( 2,1) ,( 2,− 1) ( 5,2) ,( 5,− 2) (10,3) ,(10,− 3) 41 x = y + y = x −1 y = ± ( x − 1) x y y = ± ( x −1) y = ± (1) − 1 = Ordered pairs (1,0) 164 Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Solution Manual for Precalculus 1st Edition By Miller Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Section 1.2 b 20 a ( x − h) + ( y − k ) = r ( x − 6) +  y − ( −2) = ( 6) ( x − 6) + ( y + 2) = 36 2 2 2 2 b 18 a ( x − h) + ( y − k ) = r  x − ( −3)  + ( y − 2) = ( 4) ( x + 3) + ( y − 2) = 16 2 2 2 2 b 21 a ( x − h) + ( y − k)  x − ( −4)  +  y − ( −3)  ( x + 4) + ( y + 3) 2 2 = r2 = = 11 ( 11) b 19 a ( x − h) + ( y − k ) = r  x − ( −4)  + ( y − 1) = ( 3) ( x + 4) + ( y − 1) = 2 2 2 2 b 22 a ( x − h) + ( y − k )  x − ( −5)  +  y − ( −2)  ( x + 5) + ( y + 2) 2 2 = r2 = = 21 ( 21) b 175 Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Solution Manual for Precalculus 1st Edition By Miller Full file Chapter at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Functions and Relations ( x − h) + ( y − k ) ( x − 2) + ( y − 1) ( x − 2) + ( y − 1) 23 a ( x − h) + ( y − k ) = r 2 ( x − 0) + ( y − 0) = ( 2.6) 2 x2 + y2 = 6.76 b = r2 2 = ( 5) 2 = 25 b 24 a ( x − h) + ( y − k ) = r  x + x y + y2  26 a C =  ,     + + ( −1)  , =   2    12  =  ,  = 6,1  2 ( x − 0) + ( y − 0) = ( 4.2) 2 x2 + y2 = 17.64 b ( ) r= = (x − x ) + (y − y ) ( − 6) + ( 3− 1) 2 2 2 = 1+ = ( x − h) + ( y − k ) ( x − 6) + ( y − 1) ( x − 6) + ( y − 1)  x + x y + y2  25 a C =  ,     −2 + + ( −2)  , =   2    2 =  ,  = 2,1  2 = r2 2 = 2 =5 ( ) b ( ) r= = (x − x ) + (y − y ) ( −2 − 2) + ( − 1) 2 2 2 = 16 + = 25 = 176 Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Solution Manual for Precalculus 1st Edition By Miller Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Section 1.2 27 a r = = (x − x ) + (y − y ) ( −2 − 6) + ( −1− 5) 2 2 r= 2 = = 64 + 36 = 100 = 10 ( x − h) + ( y − k ) = r  x − ( −2)  +  y − ( −1)  = (10) ( x + 2) + ( y + 1) = 100 2 2 2 2 2 = 16 = ( x − h) + ( y − k ) ( x − 4) + ( y − 6) ( x − 4) + ( y − 6) 2 (x − x ) + (y − y ) ( − 0) + ( − 6) 2 b 2 = r2 2 = ( 4) 2 = 16 b 28 a r = = (x − x ) + (y − y ) ( 3− 6) + (1− 5) 2 2 30 a The circle must touch the x-axis at − 2,0 , at one side of a diameter ( r= = + 16 = 25 = ( x − h) + ( y − k ) ( x − 3) + ( y − 1) ( x − 3) + ( y − 1) 2 = r2 2 = ( 5) 2 = 25 ) (x − x1 ) + ( y2 − y1 ) 2 =  −2 − ( −2)  + ( −4 − 0) = 16 = 2 ( x − h) + ( y − k ) = r  x − ( −2)  +  y − ( −4)  = ( 4) ( x + 2) + ( y + 4) = 16 2 b 2 2 2 b 29 a The circle must touch the y-axis at 0,6 , at one side of a diameter ( ) 31 a The circle must touch the x-axis and the y-axis at a distance r 177 Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Solution Manual for Precalculus 1st Edition By Miller Full file Chapter at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Functions and Relations from the center Since the center is in quadrant IV, the center must be 5,− ( 34 ) ( x − h) + ( y − k) = r ( x − 5) +  y − ( −5) = ( 5) ( x − 5) + ( y + 5) = 25 2 2 2 35 ( x − h) + ( y − k) = r  x − ( −4)  + ( y − 16) = ( 9) ( x + 4) + ( y − 16) = 81 ( x − h) + ( y − k) = r 2 2 2 2 2 ( ( ) ( 2 ) ( ) ) {( −1,5)} ) = r2 37 ( x + 1) + ( y − 5) = The sum of two squares will equal zero only if each individual term is zero Therefore, x = −1 and y = 32 a The circle must touch the x-axis and the y-axis at a distance r from the center Since the center is in quadrant II, the center must be −3,3 ) 2    x − − 11    = 11  2    + y − − 11      2 x + 11 + y + 11 = 11 2 2 ( 2 ( x − h) + ( y − k ) 36 ( x − h) + ( y − k) = r  x − ( −3)  + ( y − 3) = ( 3) ( x + 3) + ( y − 3) = ( x − 7) + ( y − 7) = ( 7) ( x − 7) + ( y − 7) = b ( 38 ( x − 3) + ( y + 12) = The sum of two squares will equal zero only if each individual term is zero Therefore, x = and y = −12 2 2 {(3,− 12)} b 39 ( x − 17) + ( y + 1) = −9 2 The sum of two squares cannot be negative, so there is no solution {} 40 ( x + 15) + ( y − 3) = −25 The sum of two squares cannot be negative, so there is no solution 33 ( x − h) + ( y − k) = r ( x − 8) +  y − ( −11) = ( 5) ( x − 8) + ( y + 11) = 25 2 2 2 {} 2 41 x2 + y2 + 6x − 2y + = ( x + 6x ) + ( y 2 − 2y ) = −6 178 Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Solution Manual for Precalculus 1st Edition By Miller Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Section 1.2 ( ( 1   ( −2)  =   )  x2 + 6x +    = −6 + +  + y2 − 2y +  2 ( x + 3) + ( y − 1) = ( ( ) 42 2 45 ( ( ) 43 2 1   ( −22)  = 121   ( + 6y 46 44 (x 2 1   ( 6)  =   ( x −10x ) + ( y 1   ( −10)  = 25   + 4y =4 ) + 22x + 121 + y2 = + 121 ( x + 11) ( + y2 = 125 ) Center: −11,0 ; Radius: 125 = 5 47 10x2 + 10y2 − 80x + 200y + 920 = 1=1 x2 + y2 − 8x + 20y + 92 = (x 2 2 x + y − 10x + 4y − 20 = ( x + 22x ) + y 1   ( 22)  = 121   ) = −129 ) x2 + y2 + 22x − = ) ) ( ) 104 = 26 1=1 Center: 11,− ; Radius: x2 + ( y − 10) = 104 (  x2 − 22x + 121    = −129 + 121+  + y2 + 6y +  2 ( x − 11) + ( y + 3) = ( ) Center: 0,10 ; Radius: x2 + y2 − 22x + 6y + 129 = ( x − 22x ) + ( y )=4 ) Center: − 6,7 ; Radius: ( x2 + y2 − 20y + 100 = + 100  x2 + 12x + 36    = −84 + 36 + 49  + y2 − 14y + 49  2 ( x + 6) + ( y − 7) = ( x2 + y2 − 20y − = 1   ( −14)  = 49   ) 49 = 1   ( −20)  = 100   ) = −84 − 14y ) x2 + y2 − 20y 4=2 1   (12)  = 36   ( ) Center: 5,− ; Radius: x2 + y2 + 12x − 14y + 84 = ( x + 12x ) + ( y ( ( ) Center: −3,1 ; Radius: )  x2 − 10x + 25    = 20 + 25 +  + y + 4y +  2 ( x − 5) + ( y + 2) = 49 1   ( 6)  =   − 8x ) + (y 1   ( −8)  = 16   ) = 20 ( 1   ( 4)  =   ) ) = −92 + 20y 1   ( 20)  = 100    x2 − 8x + 16    = −92 + 16 + 100  + y2 + 20y + 100  2 ( x − 4) + ( y + 10) = 24 ( ) 179 Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Solution Manual for Precalculus 1st Edition By Miller Full file Chapter at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Functions and Relations ( ) 51 4x2 + 4y2 − 20y + 25 = 25 =0 x2 + y2 − 5y + Center: 4,− 10 ; Radius: 24 = 2x2 + 2y2 − 32x + 12y + 90 = 48 (x ( x2 + y2 − 5y x2 + y2 − 16x + 6y + 45 = ) + (y − 16x + 6y 2 ) 1  25  ( −5)  =   1   ( −16)  = 64   ( ) = −45 1   ( 6)  =   25  25 25  x2 +  y2 − 5y +  = − + 4 4  5  x2 +  y −  = 2  Degenerate case (single point):     0,       x2 − 16x + 64    = −45 + 64 +  + y2 + 6y +  2 ( x − 8) + ( y + 3) = 28 ( ( ) ) Center: 8,− ; Radius: 49 28 = x2 + y2 − 4x − 18y + 89 = ( x − 4x ) + ( y 2 1   ( −4)  =   ( − 18y 52 4x2 + 4y − 12x + = x2 + y − 3x + = ) = −89 1   ( −18)  = 81   ) ( x − 3x )  x2 − 4x +    = −89 + + 81  + y − 18y + 81  2 ( x − 2) + ( y − 9) = −4 ( 50 2 2 ) = −155 1  1   ( −10)  = 25  ( −22)  = 121     ( )  x2 − 10x + 25    = −155 + 25 + 121  + y2 − 22y + 121  2 ( x − 5) + ( y − 11) = −9 ( Degenerate case: 9 9   x − 3x +  + y = − +   3   x− 2 + y =   Degenerate case (single point):     ,0     3 53 x2 + y2 − x − y − =   +  y2 − y x2 − x =   {} − 22y + y2 = − x2 + y2 − 10x − 22y + 155 = ( x −10x ) + ( y 1   ( −3)  =   ) Degenerate case: ) = − 254 ) ( {} ) 1   ( −1)  =        −  =    16 180 Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Solution Manual for Precalculus 1st Edition By Miller Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Section 1.2   1  x − x +   4  = + +   4 16    +  y − y + 16      The approximate location of the earthquake is 8,7 ( ) 58 1  3 25   x −  +  y −  = 16     25  3 = Center:  ,  ; Radius: 16  4 5 54 x2 + y2 − x − y − = 3  2     x − 3x  +  y − 3y =     The fire is located at approximately coordinate 2,1 ( )      −  =        25   −  =     36 59 A circle is the set of all points in a plane that are equidistant from a fixed point called the center 60 The center and radius can easily be identified from an equation of a circle written in standard form  2  1  x − x +   25 9  = + + 25   9 36    +  y − y + 36      2 1  5 49   x −  +  y −  = 36      5 Center:  ,  ; Radius:  6 55 ( x − 4) + ( y − 6) = (1.5) 2 61 2 2 = 10 72 − 12y + y2 = 10 72 − 12y + y2 = 100 y2 − 12y − 28 = 2 36 + 36 − 12y + y2 = 10 49 = 36 ( x − 4) + ( y − 6) = 2.25 56  x − ( −32)  + ( y − 40) = ( 20) ( x + 32) + ( y − 40) = 400 ( − − 4) + ( − y ) ( y + 2)( y − 14) = y = −2 or y = 14 y = −2 and y = 14 57 62 ( − x) + 2 − ( −1)  = 16 − 8x + x2 + = 25 − 8x + x2 = 25− 8x + x2 = 25 x2 − 8x = x ( x − 8) = x = or x = x = and x = 181 Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Solution Manual for Precalculus 1st Edition By Miller Full file Chapter at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Functions and Relations ( − x) + ( − x) 63 =6 − 4x + x2 + 16 − 8x + x2 = 20 − 12x + 2x2 = 20 − 12x + 2x2 = 36 2x2 − 12x − 16 = x2 − 6x − = x= = ( 3+ ( 3− − ( −6) ± ( −6) − 4(1)( −8) 2(1) b ± 68 ± 17 = = 3± 17 2 ) 17 ) 17,3+ 17 and 17,3 − ( −4 − x) 64 + 6 − ( −x)  = ( −4 − x ) + ( + x ) 2 c =4 16 + 8x + x2 + 36 + 12x + x2 = 52 + 20x + 2x2 = 52 + 20x + 2x2 = 16 2x2 + 20x + 36 = x2 + 10x + 18 = x= − (10) ± (10) − 4(1)(18) 2(1) d −10 ± 28 −10 ± = 2 = −5± = ( −5 + ( −5 − ) 7) 7,5 − and 7,5 + 65 a 66 a 182 Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Solution Manual for Precalculus 1st Edition By Miller Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Section 1.2 b b c c d d 67 a 68 a 183 Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Solution Manual for Precalculus 1st Edition By Miller Full file Chapter at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Functions and Relations 2 1   ( −6)  =   ( 1   ( −12)  = 36   )  x2 − 6x +    = −41+ + 36  + y2 − 12y + 36  2 ( x − 3) + ( y − 6) = ( ) ( ) Center: 3,6 ; Radius: b 4=2 The distance between the origin (0, 0) and the center (3, 6) is 32 + 62 = Therefore, the distance between the origin and the point on the circle is − 70 x2 + y2 + 4x − 12y + 31 = ( x + 4x ) + ( y 2 ( ) = −31 − 12y 1   ( 4)  =   c 1   ( −12)  = 36   )  x2 + 4x +    = −31+ + 36  + y2 − 12y + 36  2 ( x + 2) + ( y − 6) = ( ( ) ) Center: −2,6 ; Radius: 9=3 The distance between the origin (0, 0) and the center (3, 6) is d 22 + 62 = 10 Therefore, the distance between the origin and the point on the circle is 10 − 71  −15.1,15.1,1 by  −10,10,1 69 x2 + y2 − 6x − 12y + 41 = ( x − 6x ) + ( y 2 − 12y ) = −41 184 Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Solution Manual for Precalculus 1st Edition By Miller Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Section 1.2 72  −15.1,15.1,1 by  −10,10,1 74  −0.28,0.18,0.02 by  −0.1,0.2,0.02 73  −14,39,5 by  −30,5,5 Section 1.3 Functions and Relations relation; domain; y 2,4 That is, the height is unique at any given time No There are numerous times during the year when the temperature in Fort Collins, is 70 o Therefore, given an input value of 70o, there is more than one output value (time) a {(Tom Hanks, 5), (Jack Nicholson, 12), (Sean Penn, 5), (Dustin Hoffman, 7)} ( ) y f( x) −5 Yes For a given time after tree is planted, there cannot be two or more different heights 185 Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Solution Manual for Precalculus 1st Edition By Miller Full file Chapter at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Functions and Relations one point This relation is not a function b {Tom Hanks, Jack Nicholson, Sean Penn, Dustin Hoffman} c {5, 12, 7} d Yes 10 a {(Albany, 285), (Denver, 5883), (Miami, 11), (San Francisco, 11)} b {Albany, Denver, Miami, San Francisco} c {285, 5883, 11} d Yes  −4,3 , −2,− , 1,4 ,   11 a    3,− , 3,1  b −4,− 2,1,3 ( ( )( )( ) )( ) { } c {3,− 3,4,− 2,1} d No  −2,2 , −1,0 , 0,−  12 a   1,0 , 1,2 b −2,− 1,0,1 ( )( )( ( )( ) { } c {2,0,− 2} ) ,   d No 13 False 14 True 15 No vertical line intersects the graph in more than one point This relation is a function 16 No vertical line intersects the graph in more than one point This relation is a function 17 There is at least one vertical line that intersects the graph in more than one point This relation is not a function 18 No vertical line intersects the graph in more than one point This relation is a function 19 No vertical line intersects the graph in more than one point This relation is a function 20 There is at least one vertical line that intersects the graph in more than 186 Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Solution Manual for Precalculus 1st Edition By Miller Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Section 1.3 No two ordered pairs have the same x value but different y values This relation is a function 21 No vertical line intersects the graph in more than one point This relation is a function 22 There is at least one vertical line that intersects the graph in more than one point This relation is not a function 23 This mapping defines the set of ordered pairs: 27 ( x + 1) + ( y + 5) = 25 This equation represents the graph of a circle with center −1,− and ( 28 ( x + 3) + ( y + 4) = This equation represents the graph of a circle with center −3,− and All four ordered pairs have the same x value but different y values This relation is not a function 24 This mapping defines the set of ordered pairs: ) radius This relation is not a function because it fails the vertical line test 29 y = x + Two ordered pairs have the same x value but different y values This relation is not a function 25 This mapping defines the set of {(1,4) ,( 2,5) ,(3,5)} No two ordered pairs have the same x value but different y values This relation is a function 26 This mapping defines the set of ordered pairs: )( ( {( −3,11) ,( −6,13) ,( −6,9)} {( ) radius This relation is not a function because it fails the vertical line test {( −8,3) ,( −8,4) ,( −8,5) ,( −8,6)} ordered pairs: )( )( No vertical line intersects the graph in more than one point This relation is a function )} 5,− , 6,− , 7,− , 8,− 30 y = x − No vertical line intersects the graph in more than one point This relation is a function 31 a y = x2 187 Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Solution Manual for Precalculus 1st Edition By Miller Full file Chapter at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Functions and Relations No vertical line intersects the graph in more than one point This relation is a function b x = y2 y2 = x y=± x x y y=± x 0 y=± 0=0 ± y = ± = ±1 y = ± = ±2 ± ± y = ± = ±3 Ordered pairs 0,0 ( ) (1,± 1) ( 4,± 2) ( 9,± 3) Two or more ordered pairs have the same x value but different y values This relation is not a function 32 a y = x 0,0 0 y = ±0 y = ±x 1,± 1 ±1 y = ±1 ±2 y = ±2 ±3 ( ) ( ) ( 2,± 2) ( 3,± 3) y = ±3 Two or more ordered pairs have the same x value but different y values This relation is not a function 33 4,1 ( ) 34 ( 7,− 5) No vertical line intersects the graph in more than one point This relation is a function b x = y 35 f ( x) = x2 + 3x y =x a f ( −2) = ( −2) + 3( −2) = − = −2 y = ±x b f ( −1) = ( −1) + 3( −1) = 1− = −2 x y 2 y = ±x Ordered i c f ( 0) = ( 0) + 3( 0) = + = 188 Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Solution Manual for Precalculus 1st Edition By Miller Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller Section 1.3 d f (1) = (1) + 3(1) = 1+ =  1 =3 41 g   =  3    3   42 h( 7) = e f ( 2) = ( 2) + 3( 2) = + = 10 36 g ( x ) = x a g ( −2) = 43 k ( −5) = 1 =− ( −2) b g ( −1) = 37 h( x) = 44 f ( 5) = ( 5) + 3( 5) = 25 + 15 = 40 = −1 ( −1) 45 k ( 8) = (8) + = = 46 f ( −5) = ( −5) + 3( −5) = 25 − 15 = 10 47 g (t) = 49 k ( x + h) = = a2 + 8a + 16 + 3a + 12 = a2 + 11a + 28 52 f(t− 3) = (t− 3) + 3(t− 3) = t2 − 6t+ + 3t− = t2 − 3t 53 g ( 0) = Undefined 54 k ( −10) = ( −10) + = −9 d h(1) = e h( 2) = 38 k ( x) = x + ( −2) + = Undefined −1 55 f ( x + h) = ( x + h) + 3( x + h) Undefined d k (1) = e k ( 3) = x + h+1 51 f ( a + 4) = ( a + 4) + 3( a + 4) c h( 0) = c k ( 0) = ( x + h) + = 50 h( x + h) = 1 = ( 2) b h( −1) = b k ( −1) = 1 = (t) t 48 f ( a) = ( a) + 3( a) = a2 + 3a a h( −2) = a k ( −2) = −4 Undefined  1 = −2 c g  −  =  2  − 1  2    1 =2 d g   =  2  1  2   e g ( 2) = ( −5) + = ( −1) + = = ( 0) + = = (1) + = ( 3) + = = = x2 + 2xh + h2 + 3x + 3h 56 g ( x + h) = x+ h 57 f( x + h) = −4( x + h) − 5( x + h) + 2 ( ) = −4 x2 + 2xh + h2 − 5x − 5h + = −4x2 − 8xh − 4h2 − 5x − 5h + 1 = 39 g ( 3) = ( 3) 58 f( x + h) = −2( x + h) + 6( x + h) − 40 h( −7) = 189 Full file at https://TestbankDirect.eu/Solution-Manual-for-Precalculus-1st-Edition-By-Miller ... https://TestbankDirect.eu /Solution- Manual- for- Precalculus- 1st- Edition- By- Miller Solution Manual for Precalculus 1st Edition By Miller Full file at https://TestbankDirect.eu /Solution- Manual- for- Precalculus- 1st- Edition- By- Miller. .. https://TestbankDirect.eu /Solution- Manual- for- Precalculus- 1st- Edition- By- Miller Solution Manual for Precalculus 1st Edition By Miller Full file at https://TestbankDirect.eu /Solution- Manual- for- Precalculus- 1st- Edition- By- Miller. .. https://TestbankDirect.eu /Solution- Manual- for- Precalculus- 1st- Edition- By- Miller Solution Manual for Precalculus 1st Edition By Miller Full file at https://TestbankDirect.eu /Solution- Manual- for- Precalculus- 1st- Edition- By- Miller

Ngày đăng: 21/08/2020, 09:47

TỪ KHÓA LIÊN QUAN