Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 28 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
28
Dung lượng
1,61 MB
Nội dung
Liªn tôc Kh«ng liªn tôc TiÕt 58 1 1 HĐ1: Cho 2 hàm số: f(x)=x 2 ; g(x)= 2 2 2 2 2 x x + + nếu x nếu -1<x<1 nếu x = = x neỏu x 1 h(x) 2 neỏu x 1 a)Tính f(1), g(1),h(1) và so sánh với 1 lim ( ) x f x 1 lim ( ), x g x (nếu có) b)Nhận xét gì về đồ thị mỗi hàmsố tại x=1 1 lim ( ), x h x 1; 1; 1 lim ( ) x f x =1; 1 lim ( ) x g x : không tồn tại; Giải: = x 1 lim h(x) 2 Vậy: = = x 1 lim h(x) 1 h(1) 2 1 lim ( ) x f x = f(1); 1 lim ( ) x g x : không tồn tại; a) f(1)= g(1)= h(1)= 1 lim x x = 1 1 lim ( ) x h x = 2; 1 lim ( ) x h x + = 2 1 lim( 2) x x + + = 1 * Đồ thị hàmsố y=f(x) là một đường liền nét. * Đồ thị hàmsố y= g(x) bị đứt quãng tại điểm có hoành độ x=1. * Đồ thị hàmsố y= h(x) bị đứt quãng tại điểm có hoành độ x=1. 1 lim ( ) x f x = f(1); 1 lim ( ) x g x : không tồn tại; = = x 1 lim h(x) 1 h(1) 2 1 -1 1 O 2 x y y=g(x) b) Nhận xét đồ thị: o y x 2 y=h(x) 1 1 1 0 1 x y=f(x)y I. Hàm sốliêntục tại một điểm. K Định nghĩa 1: Cho hàmsố y=f(x) xác định trên khoảng K và x 0 Hàmsố y=f(x) được gọi là liêntục tại x 0 nếu 0 0 lim ( ) ( ) x x f x f x = Hàmsố y=f(x) không liêntục tại x 0 được gọi là gián đoạn tại điểm đó. Để kiểm tra hàmsố y=f(x) có liêntục tại x 0 không? + 0 lim ( ) x x f x + 0 0 lim ( ) ( ) x x f x f x = + x 0 TXĐ I. Hàm sốliêntục tại một điểm. Hàmsố y=f(x) liêntục tại x 0 nếu: 0 0 lim ( ) ( ) x x f x f x = + 0 lim ( ) x x f x + + x 0 TXĐ I. Hàm sốliêntục tại một điểm. Ví dụ 1: Xét tính liêntục của hàmsố ( ) 2 x f x x = tại x 0 =3 Giải: Hàmsố y=f(x) có tập xác định: x 0 = 3 TXĐ Có 3 lim ( ) x f x = =3 Vậy hàm sốliêntục tại x 0 = 3. I. Hàm sốliêntục tại một điểm. Hàmsố y=f(x) liêntục tại x 0 nếu: 0 0 lim ( ) ( ) x x f x f x = + 0 lim ( ) x x f x + + x 0 TXĐ { } 2 R\ 3 lim 2 x x x f(3)= 3 3 lim ( ) (3) x f x f = I. Hµm sè liªn tôc t¹i mét ®iÓm. Hµm sè y=f(x) liªn tôc t¹i x 0 nÕu: 0 0 lim ( ) ( ) x x f x f x → = + ∃ 0 lim ( ) x x f x → + + x 0 ∈ TX§ VÝ dô 2: Cho hµm sè: 2 2 1 ( ) 2 x f x x + = − − nÕu x<1 nÕu 1x ≥ XÐt tÝnh liªn tôc cña hµm sè t¹i x 0 =1 Gi¶i: Gi¶i: TX§: x 0 =1 ∈ TX§. Cã f(1)= -3 1 lim ( ) x f x − → = 1 lim(2 1) x x − → + = 3 1 lim ( ) x f x + → = 2 1 lim( 2) x x + → − − = -3 ⇒ 1 lim ( ) : x f x → kh«ng tån t¹i VËy hµm sè gi¸n ®o¹n t¹i x 0 =1 R R ∀ ∈ VÝ dô 3: Cho hµm sè f(x)=x 2 – 2x CMR: hµm sè liªn tôc víi x 0 (0;3) CM: Suy ra hµm sè x¸c ®Þnh : 0 (0;3);x∀ ∈ 0 (0;3)x∀ ∈ ta cã: 0 lim ( ) x x f x → = 2 0 x 0 2x− 0 ( )f x= VËy hµm sè liªn tôc víi 0 (0;3)x∀ ∈ I. Hµm sè liªn tôc t¹i mét ®iÓm. Hµm sè y=f(x) liªn tôc t¹i x 0 nÕu: 0 0 lim ( ) ( ) x x f x f x → = + ∃ 0 lim ( ) x x f x → + + x 0 ∈ TX§ TX§: R R [...]... khong liờn tc O Kt lun: th hm s liờn tc trờn mt thi l ng khong l ng nột trờn lin lin nột trờn khong ú tc khong liờn th l mụt ng lin nột trờn O ỡ x khi x 0 ù g(x) = ù ớ ù 2 khi x . -1<x<1 nếu x = = x neỏu x 1 h(x) 2 neỏu x 1 a)Tính f(1), g(1),h(1) và so sánh với 1 lim ( ) x f x 1 lim ( ), x g x (nếu có) b)Nhận xét gì về đồ. liền nét trên khoảng liên tục đồ thị là môt đường liền nét trên khoảng liên tuc đồ thi là đường liền nét trên khoảng liên tục đồ thị là đường liền nét trên