1. Trang chủ
  2. » Giáo Dục - Đào Tạo

ĐỀ THI THỬ CAO ĐẲNG NĂM 2013 Môn TOÁN Khối A TRƯỜNG THPT CHUYÊN NGUYÊN TẤT THÀNH

6 84 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 544 KB

Nội dung

ĐỀ THI THỬ CAO ĐẲNG NĂM 2013 Môn TOÁN Khối A TRƯỜNG THPT CHUYÊN NGUYÊN TẤT THÀNH

WWW.VIETMATHS.COM TRƯỜNG THPT CHUYÊN NGUYÊN TẤT THÀNH TỔ: TOÁN ĐỀ THI THỬ CAO ĐẲNG NĂM 2013 Môn thi: TOÁNKhối A Thời gian làm bài: 180 phút, không kể thời gian giao đề ĐỀ SỐ 2 I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm). Cho hàm số 4 2 (3 1) 3= + + −y x m x (với m là tham số) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = -1. 2. Tìm tất cả các giá trị của m để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác cân sao cho độ dài cạnh đáy bằng 3 2 lần độ dài cạnh bên. Câu II (2,0 điểm) 1. Giải phương trình: 2cos6x + 2cos4x – 3 cos2x = sin2x + 3 2. Giải hệ phương trình 4 2 4 2 2 x y x y x y x y  + + + =   + + + = −   Câu III (1,0 điểm) Tính tích phân: ( ) 4 0 tan x I dx 4cos x sin x cos x π = − ∫ . Câu IV (1,0 điểm) ). Cho hình chóp S.ABC có AB = AC = 5a, BC = 6a và hình chiếu vuông góc của S lên mặt phẳng (ABC) trùng với tâm của đường tròn nội tiếp tam giác ABC. Góc giữa mặt phẳng (SBC) và mặt phẳng (ABC) bằng 60 0 . Tính thể tích của khối chóp S.ABC theo a. Câu V (1,0 điểm) Cho a, b, c là các số dương tùy ý thỏa mãn abc 8= . Hãy tìm giá trị lớn nhất của biểu thức: 1 1 1 P 2a b 6 2b c 6 2c a 6 = + + + + + + + + . II.PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B) A. Theo chương trình chuẩn Câu VI.a (2,0 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A( − 1;2) và đường thẳng ( ∆ ): 3 4 7 0x y− + = . Viết phương trình đường tròn đi qua điểm A và cắt đường thẳng ( ∆ ) tại hai điểm B, C sao cho ∆ ABC vuông tại A và có diện tích bằng 4 5 . 2. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng 1 1 2 : 2 1 1 x y z− − − ∆ = = − và điểm A(2;1;2). Viết phương trình mặt phẳng (P) chứa ∆ sao cho khoảng cách từ A đến (P) bằng 1 3 . Câu VII.a (1,0 điểm) Giải phương trình: ( ) 0)2(2)2(log74)2(log2 2 2 2 =−+−−+− xxxx . B. Theo chương trình nâng cao Câu VI.b (2,0 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có tâm I(2; − 3). Biết đỉnh A, C lần lượt thuộc các đường thẳng x + y + 3 = 0 và x +2y + 3 = 0. Tìm tọa độ các đỉnh của hình vuông. 2. Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(1; 5; 0), B(3; 3; 6) và đường thẳng ∆ : x y z1 1 2 1 2 + − = = − . Viết phương trình đường thẳng d đi qua điểm B và cắt đường thẳng ∆ tại điểm C sao cho diện tích tam giác ABC có giá trị nhỏ nhất. Câu VII.b (1,0 điểm) Giải hệ phương trình:    +−=−− ++=++ 422)23(log log)7(log1)(log 2 22 2 yxyx yyxyx ----------Hết ---------- Thí sinh không sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh……………………….; Số báo danh…………………… WWW.VIETMATHS.COM TRƯỜNG THPT CHUYÊN NGUYÊN TẤT THÀNH TỔ: TOÁN ĐÁP ÁN ĐỀ SỐ 2 Câu Đáp án Điểm I 1.(1.0 điểm) Khi 1 −= m hàm số trở thành 32 24 −−= xxy • Tập xác định: D = ¡ • Sự biến thiên: • Chiều biến thiên: 1;00';44' 3 ±==⇔=−= xxyxxy 0.25 Hàm số nghịch biến trên mỗi khoảng )1;( −−∞ và )1;0( ; đồng biến trên mỗi khoảng )0;1( − và );1( +∞ - Cực trị: Hàm số đạt cực đại tại x=0; y cđ =-3; hàm số đạt cực tiểu tại 1 ±= x ; y ct =-4 - Giới hạn: y = ∞+ ; y = +∞ 0.25 - Bảng biến thiên: 0.25 • Đồ thị: 2 -2 -4 Đồ thị nhận trục tung làm trục đối xứng. 0.25 2.(1.0 điểm) 2 13 ,00';)13(24' 23 + −==⇔=++= m xxyxmxy , Đồ thị hàm số có ba điểm cực trị (*) 3 1 −<⇔ m . 0.25 Với đk(*), đồ thị hàm số có ba điểm cực trị: )3;0( − A ;         − +−−− 3 4 )13( ; 2 13 2 mm B ;         − +−−− − 3 4 )13( ; 2 13 2 mm C Ta có: AB = AC = 4 3m 1 (3m 1) 2 16 − − + + ; BC = 3m 1 2 2 − − Suya ra: ABC ∆ cân tại A 0.25         + + −− =       −− ⇔= 16 )13( 2 13 4 2 13 4.9 3 2 BC 4 mmm AB 5 m 3 1 m 3  = −  ⇔   = −   0.25 (2.0 điểm So với điều kiện (*), ta được 3 5 −= m . 0.25 -3 y’ x y -∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ 0 0 0 0 -1 1 -4 + - - -4 + y O x WWW.VIETMATHS.COM ) 1.(1.0 điểm) 2cos6x + 2cos4x – 3 cos2x = sin2x + 3 ⇔ 2(cos6x + cos4x) – sin2x – 3 (1 + cos2x) = 0 ⇔ 4cos5xcosx – 2sinxcosx – 2 3 cos 2 x = 0 0.25 ⇔ 2cosx(2cos5x – sinx – 2 3 cosx) = 0 ⇔    += = xcos3xsinx5cos2 0xcos 0.25 ⇔            π −= = 6 xcosx5cos 0xcos 0.25 ⇔ x = 2 π + kπ, x = – 24 π + k 2 π , x = 36 π + k 3 π 0.25 2.(1.0 điểm) Điều kiện: 4 0 2 0 x y x y + ≥   + ≥  Đặt: a 2x y ,(a 0,b 0). b 4x y  = +  ≥ ≥  = +   Suy ra: 2 2 3 b x y a 2 2 + = − 0,25 Ta có hệ 2 2 2 3 1 2 5 6 0 2 2 4 4 a a b a a b a a b   + − = − + − =  ⇔   = −   + =  0,25 ⇔ 1 1 3 6 6 4 10 a a b a a b a b  =   =    =     ⇔ = −    = −    = −   =    0,25 So với điều kiện a 0,b 0≥ ≥ , ta được: 2 1 1 2 1 4 3 4 9 7 4 3 x y a x y x b x y y x y  + = = + = =     ⇒ ⇔ ⇔     = + = = − + =      Vậy hệ phương trình có nghiệm (x; y) = (4; -7). 0,25 III (1.0 điểm ) Ta có: ( ) 4 2 0 tan x I dx 4 tan x cos x π = − ∫ 0.25 Đặt: 2 dx tan x 4 t dt cos x − = ⇒ = . Đổi cận: Với x 0 t 4; x t 3 4 π = ⇒ = − = ⇒ = − Suy ra: 3 4 (t 4).dt I t − − + = − ∫ 0.25 3 4 4 (1 )dt t − − = − + ∫ 3 4 (t 4ln t ) − − = − + 0.25 4 4ln 1 3 = − 0.25 WWW.VIETMATHS.COM IV Gọi I là trung điểm của BC và H là tâm đường tròn nội tiếp tam giác ABC. Vì tam giác ABC cân tại A nên H thuộc AI và AI ⊥ BC, HI = r ( r là bán kính đường tròn nội tiếp tam giác ABC). 0.25 Theo giả thiết SH ⊥ (ABC). Suy ra SH là đường cao của khối chóp S.ABC.HI là hình chiếu của SI lên mp(ABC) mà HI vuông góc BC nên SI vuông góc với BC. Suy ra góc giữa mp(SBC) với mp(ABC) là góc · SHI . Theo giả thiết · SHI = 60 0 . 0.25 Đặt p = ( AB + AC + BC ) : 2 = 8a + S ABC = 12a 2 ; + S ABC = pr ABC S 3a r p 2 ⇒ = = ; +SH = r.tg60 0 = 3a 3 2 0.25 = = 3 S.ABC ABC 1 V SH.S 6a 3 3 0.25 V (1.0 điểm ) 1 1 1 1 1 1 1 P P b c a 2a b 6 2b c 6 2c a 6 2 a 3 b 3 c 3 2 2 2     = + + ⇒ = + +   + + + + + +   + + + + + +   . Đặt: ; ; , , 0 & . . 1 2 2 2 a b c x y z x y z x y z= = = ⇒ > = Khi đó: 1 1 1 1 2 2 3 2 3 2 3 P x y y z z x   = + +   + + + + + +   Mà ta có: 2 ; 1 2 2 3 2( 1)+ ≥ + ≥ ⇒ + + ≥ + +x y xy x x x y xy x 1 1 2 3 2( 1) ⇒ ≤ + + + + x y xy x . Tương tự: 1 1 2 3 2( 1) ≤ + + + + y z yz y , 1 1 2 3 2( 1) ≤ + + + + z x zx z Suy ra: 1 1 1 1 4 1 1 1 P xy x yz y zx z   ≤ + +   + + + + + +     0.25 1 1 4 1 ( 1) ( 1) 1 1 1 4 4 1 1 ) 1   ⇒ ≤ + +   + + + + + +       ⇔ ≤ + + =   + + + + + +     xy x P xy x x yz y xy zx z xy x P xy x xy x x xy 0.25 WWW.VIETMATHS.COM Vy maxP = 1 4 khi x = y = z = 1 Suy ra )(tf đồng biến trên ]3,3[ . Do đó . 3 14 )3()( = ftf Dấu đẳng thức xảy ra khi .13 ==== zyxt Vậy GTLN của A là 3 14 , đạt đợc khi .1 === zyx 0.25 VIa (2.0 im ) 1.(1.0 im) Gi AH l ng cao ca ABC , ta cú 4 ( ; ) 5 AH d A= = . 1 4 1 4 . . . 2 2 5 2 5 ABC S AH BC BC BC = = = . Gi I; R ln lt l tõm v bỏn kớnh ca ng trũn cn tỡm, ta cú 1 1 2 R AI BC= = = . 0,25 Phng trỡnh tham s ca ng thng ( ): x 1 4t y 1 3t ỡ = - + ù ù ớ ù = + ù ợ . I ẻ ( ) ị I(-1+4t; 1 + 3t). Ta cú AI = 1 16t 2 + (3t 1) 2 = 1 t = 0 hoc t = 9 5 . 0,25 + t = 0 ị I(-1; 1). Phng trỡnh ca ng trũn l (x + 1) 2 + (y 1) 2 = 1. 0,25 + t = 9 5 ị I(- 1 25 ; 43 25 ). Phng trỡnh ca ng trũn l (x + 1 25 ) 2 + (y 43 25 ) 2 = 1. 0,25 2.(1.0 im) ng thng i qua im M(1 ; 1 ; 2 ) v cú vtcp l u = (2 ; -1 ; 1). Gi n = (a ; b ; c ) l vtpt ca (P). Vỡ ( )P nờn . 0n u = . 0,25 2a b + c = 0 b = 2a + c n =(a; 2a + c ; c ) . Suy ra phng trỡnh ca mt phng (P) l a(x 1) + (2a + c )(y 1) + c(z 2 ) = 0 ax + (2a + c )y + cz - 3a - 3c = 0. 0,5 d(A ; (P)) = 1 3 2 2 2 1 3 (2 ) a a a c c = + + + ( ) 2 0a c + = 0a c + = . Chn a = 1 , c = -1 Suy ra phng trỡnh ca mt phng (P) l x + y z = 0. 0,25 VIIa (1.0 im ) iu kin: 2 > x , phng trỡnh ó cho tng ng vi: 0.25 ( ) ( ) 042)2(log.1)2(log2 22 =++ xxx =+ =+ 042)2(log 01)2(log2 2 2 xx x 0.25 + 01)2(log2 2 =+ x 1 x 2 2 = + . So vi iu kin ta c 1 x 2 2 = + 0.25 + 042)2(log 2 =+ xx , vỡ hn s 2 f (x) log (x 2) 2x 4= + l hm s ng bin trờn ( ) + ;2 v 5 f ( ) 0 2 = nờn 2 5 = x l nghim duy nht ca phng trỡnh f(x) = 0. Vy phng trỡnh cú hai nghim 2 1 2 += x v 2 5 = x 0.25 VI.b (2.0 im ) 1.(1.0 im) Vỡ im A thuc ng thng x + y + 3 = 0 v C thuc ng thng x+ 2y + 3 = 0 nờn A(a;-a3) v C(- 2c 3 ; c). 0.25 I l trung im ca AC 2 3 4 1 3 6 4 a c a a c c = = + = = A(-1; -2); C(5 ;-4) 0.25 WWW.VIETMATHS.COM Đường thẳng BD đi qua điểm I(2 ; -3 ) và có vtcp là u r =(1;3) có ptts là x 2 t y 3 3t = +   = − +  B ∈ BD ⇒ B(2+t ; -3 +3t). Khi đó : AB uuur = (3 +t ;–1+3t); CB uuur = (- 3+t; 1+3t) . 0AB CB → → = Û t = ± 1. 0.25 Vậy A(-1; -2); C(5 ;-4), B(3;0) và D(1;-6) hoặc A(-1; -2); C(5 ;-4), B(1;-6) và D(3;0) 0.25 2.(1.0 điểm) Phương trình tham số của ∆: = − +   = −   =  x t y t z t 1 2 1 2 . Điểm C thuộc đường thẳng ∆ nên tọa độ điểm C có dạng − + −C t t t( 1 2 ;1 ; 2 ) . AC ( 2 2t; 4 t;2t);AB (2; 2;6)= − + − − = − uuur uuur 0,25 2 , ( 24 2 ;12 8 ;12 2 ) , 18 36 216AC AB t t t AC AB t t     = − − − − ⇒ = − +     uuur uuur uuur uuur 0,25 Diện tích ∆ABC là 2 1 , 18 36 216 2 S AC AB t t   = = − +   uuur uuur = 2 18( 1) 198t − + ≥ 198 Vậy Min S = 198 khi t 1= hay C(1; 0; 2). 0,25 Đường thẳng BC đi qua đi qua B và nhận BC ( 2; 3; 4)= − − − uuur làm vectơ chỉ phương nên có phương trình chính tắc là x 3 y 3 z 6 2 3 4 − − − = = − − − . 0,25 VIIb (1.0 điểm ) 2 2 2 2 log (x y) 1 log (7x y) log y (1) log (3x y 2) 2x 2y 4 (2) + + = + +   − − = − +  Điều kiện      > >+ >+ 0 07 0 y yx yx Với đk trên phương trình (1) trở thành: yyxyx )7(log)(2log 2 2 2 +=+ 0.25 ⇔    = = ⇔=+− xy xy yxyx 2 032 22 0.25 Với xy = thế vào phương trình (2) ta được 94)22(log 2 =⇔=− xx Suy ra 9 == yx ,( thoả mãn điều kiện). 0.25 Với xy 2 = thế vào phương trình (1) ta được ⇔−=− xx 24)2(log 2 042)2(log 2 =−+− xx Vì hàm số 2 f (x) log (x 2) 2x 4= − + − là hàm số đồng biến trên ( ) +∞ ;2 và 5 f ( ) 0 2 = nên 2 5 = x là nghiệm duy nhất của phương trình f(x) = 0. Suy ra      = = 5 2 5 y x ,( thoả mãn điều kiện). Vậy hệ đã cho có hai nghiệm    = = 9 9 y x và      = = 5 2 5 y x 0.25 . 2 > x , phng trỡnh ó cho tng ng vi: 0 .25 ( ) ( ) 0 42) 2(log.1 )2( log2 22 =++ xxx =+ =+ 0 42) 2(log 01 )2( log2 2 2 xx x 0 .25 + 01 )2( log2 2 =+ x 1 x 2. 2 2 = + . So vi iu kin ta c 1 x 2 2 = + 0 .25 + 0 42) 2(log 2 =+ xx , vỡ hn s 2 f (x) log (x 2) 2x 4= + l hm s ng bin trờn ( ) + ;2 v 5 f ( ) 0 2 = nờn 2

Ngày đăng: 05/09/2013, 08:10

HÌNH ẢNH LIÊN QUAN

- Bảng biến thiờn: - ĐỀ THI THỬ CAO ĐẲNG  NĂM 2013 Môn TOÁN Khối A TRƯỜNG THPT CHUYÊN NGUYÊN TẤT THÀNH
Bảng bi ến thiờn: (Trang 2)
w