1. Trang chủ
  2. » Giáo án - Bài giảng

06 wave transformation

11 41 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 611,58 KB

Nội dung

WAVE TRANSFORMATION Wave Transformation • Shoaling • Refraction • Diffraction • Reflection • Breaking • Reforming Wave Shoaling Wave Refraction Wave Refraction Wave Crests and Orthogonals (Rays) Refraction of Wave Rays Basic Presumption: Wave energy flux conserved between P0 rays P0 = P1 P1 Wave Energy Flux Conservation P  EC g b From point to 1: In deep water: Po  Eo Co bo P   ECg b    ECg b  Cg H1  H0 Cg 1 b0 1 Co  b1 2n C bo  KS K R b Shoaling coefficient Refraction coefficient Equivalent Deepwater Wave Height Ho’ : wave height in deep water if the wave is not refracted H 1 Co  Ho 2n C bo  KS K R b H0´ H0 Inkludera fig H H' KR  o Ho KS  H H o' Example, page 2-27: GIVEN: A deepwater oscillatory wave with a wavelength Lo=156 m, a height Ho=2 m, and a celerity Co=15.6 m/s, moving shoreward with its crest parallel to the depth contours Any effects due to reflection from the beach are negligible FIND: a Derive a relationship between the wave height in any depth of water and the wave height in deep water b Calculate the wave height when the depth is m c Determine the rate at which energy is transported toward the shoreline and the total energy delivered to the shore in hr Snell’s Law Snell’s Law Refraction: sin 1  sin  L1 C  sin  L2 C2 Wave ray spacing: b1 cos 1  b2 cos 2 Example, page 2-64: GIVEN: The wave angle o=30 deg, and the period and depth are such that C/Co=0.5 FIND: Wave angle at that depth and refraction coefficient Example, Refraction Calculation C0 = 1.56T = 7.8 m/s, L0 = 1.56T = 39 m d 25 12 H3 = ? , α3 = ? d/L0 0.64 0.31 0.077 C/C0 0.99 0.97 0.64 C 7.79 ~ C0 7.56 5.01 d=3m d = 12 m d = 25 m Wave gage * α25 = 28 o H0 = m, T = sec, α = 28o Example, Refraction Calculation C0 = 1.56T = 7.8 m/s, L0 = 1.56T = 39 m d 25 12 H3 = ? , α3 = ? d/L0 0.64 0.31 0.077 C/C0 0.99 0.97 0.64 C 7.79 ~ C0 7.56 5.01 d=3m d = 12 m α’25 = 17 o (measured) d = 25 m Wave gage * α25 = 28 o H0 = m, T = sec, α = 28o Example, Refraction Calculation C0 = 1.56T = 7.8 m/s, L0 = 1.56T = 39 m d 25 12 H3 = ? , α3 = ? d/L0 0.64 0.31 0.077 C/C0 0.99 0.97 0.64 ’ C12 /C25 sinα12 = sinα25 C 7.79 ~ C0 7.56 5.01 α12 = 16.6o draw! d=3m d = 12 m α’25 = 17 o (measured) d = 25 m Wave gage * α25 = 28 o H0 = m, T = sec, α = 28o Example, Refraction Calculation C0 = 1.56T = 7.8 m/s, L0 = 1.56T = 39 m d 25 12 H3 = ? , α3 = ? d/L0 0.64 0.31 0.077 C/C0 0.99 0.97 0.64 ’ C12 /C25 sinα12 = sinα25 C 7.79 ~ C0 7.56 5.01 α12 = 16.6o draw! d=3m d = 12 m α12 = 16.6 o α’25 = 17 o (measured) d = 25 m Wave gage * α25 = 28 o H0 = m, T = sec, α = 28o Example, Refraction Calculation C0 = 1.56T = 7.8 m/s, L0 = 1.56T = 39 m d 25 12 H3 = ? , α3 = ? d/L0 0.64 0.31 0.077 C/C0 0.99 0.97 0.64 ’ C12 /C25 sinα12 = sinα25 C 7.79 ~ C0 7.56 5.01 α12 = 16.6o draw! d=3m α’12 = 25 o (measured) d = 12 m α12 = 16.6 o α’25 = 17 o (measured) d = 25 m Wave gage * α25 = 28 o H0 = m, T = sec, α = 28o Example, Refraction Calculation C0 = 1.56T = 7.8 m/s, L0 = 1.56T = 39 m d 25 12 H3 = ? , α3 = ? α’3 = 15.5 o (measured) d/L0 0.64 0.31 0.077 C/C0 0.99 0.97 0.64 ’ C12 /C25 sinα12 = sinα25 C 7.79 ~ C0 7.56 5.01 α12 = 16.6o draw! d=3m α3 = 16.2 o α’12 = 25 o (measured) d = 12 m α12 = 16.6 o α’25 = 17 o (measured) d = 25 m Wave gage * α25 = 28 o H0 = m, T = sec, α = 28o Example, Refraction Calculation C0 = 1.56T = 7.8 m/s, L0 = 1.56T = 39 m d 25 12 H3 = ? , α3 = ? d/L0 0.64 0.31 0.077 C/C0 0.99 0.97 0.64 C 7.79 ~ C0 7.56 5.01 b3 α’3 = 15.5 o (measured) ’ C12 /C25 sinα12 = sinα25 α12 = 16.6o draw! d=3m α3 = 16.2 o α’12 = 25 o (measured) d = 12 m α12 = 16.6 o α’25 = 17 o (measured) d = 25 m Wave gage * α25 = 28 o H0 = m, T = sec, α = 28o Example, Refraction Calculation C0 = 1.56T = 7.8 m/s, L0 = 1.56T = 39 m d 25 12 H3 = ? , α3 = ? α’’3 = 12.5 o (measured) b3 α’3 = 15.5 o (measured) d/L0 0.64 0.31 0.077 C/C0 0.99 0.97 0.64 ’ C12 /C25 sinα12 = sinα25 C 7.79 ~ C0 7.56 5.01 α12 = 16.6o draw! d=3m α3 = 16.2 o α’12 = 25 o (measured) d = 12 m α12 = 16.6 o α’25 = 17 o (measured) d = 25 m Wave gage * α25 = 28 o H0 = m, T = sec, α = 28o Example, Refraction Calculation C0 = 1.56T = 7.8 m/s, L0 = 1.56T = 39 m d 25 12 H3 = ? , α3 = ? α’’3 = 12.5 o (measured) b3 d/L0 0.64 0.31 0.077 C/C0 0.99 0.97 0.64 C 7.79 ~ C0 7.56 5.01 ’ C12 /C25 sinα12 = sinα25 α’3 = 15.5 o (measured) α12 = 16.6o draw! d=3m H3  H0Ks KR α3 = 16.2 o α’12 = 25 o (measured) K R  b25 / b3 d = 12 m α12 = 16.6 o H  1.35  0.96  2.60 m α’25 = 17 o (measured) d = 25 m Wave gage * K S  0.96 (Table 3)   (  3'   3'' ) /  14.0 o α25 = 28 o H0 = m, T = sec, α = 28o Fan-Type Refraction Diagram Main Items Understand and calculate: • kinetic and potential wave energy • wave energy flux and its conservation • refraction Diffraction Wave Diffraction Helmholtz equation: 2F 2 F   k 2F  x y Diffraction, Semi-Infinte Breakwater Diffraction Through a Gap Diffraction, Special Cases Wave approach in gap at an angle Diffraction, Special Cases Wave approach in gap at an angle 10 Diffraction, Special Cases B > 5L no interaction between tips Diffraction, Special Cases Diffraction around detached breakwater Superposition of diffraction sources K '  K L'2  K R'2  K L' K R' cos  11 .. .Wave Refraction Wave Refraction Wave Crests and Orthogonals (Rays) Refraction of Wave Rays Basic Presumption: Wave energy flux conserved between P0 rays P0 = P1 P1 Wave Energy Flux... K R b Shoaling coefficient Refraction coefficient Equivalent Deepwater Wave Height Ho’ : wave height in deep water if the wave is not refracted H 1 Co  Ho 2n C bo  KS K R b H0´ H0 Inkludera... negligible FIND: a Derive a relationship between the wave height in any depth of water and the wave height in deep water b Calculate the wave height when the depth is m c Determine the rate at

Ngày đăng: 19/04/2019, 11:20

TỪ KHÓA LIÊN QUAN

w