LỜI GIẢI MỘT SỐ BÀI TẬP TOÁN CAO CẤP Lời giải số tập tài liệu dùng để tham khảo Có số tập số sinh viên giải Khi học, sinh viên cần lựa chọn phương pháp phù hợp đơn giản Chúc anh chị em sinh viên học tập tốt BÀI TẬP VỀ HẠNG CỦA MA TRẬN Bài 1: Tính hạng ma trận: −4 −2 −4 η1↔ η2 → 1) A = −1 −7 −4 −2 −4 −4 1 −1 −7 −4 → −2 −4 0 −4 η 2↔ η3 → −1 −5 3 −2 −4 −1 0 −4 −5 3 η2(5)+η4 → −2 −4 −1 η3( 2)+ η4 → 0 −4 0 −2 15 −2 −4 −1 0 −4 0 33 h1(−2)+η2 η1(−1)+η4 ⇒ ρ( Α) = 2) A= −4 −1 −4 1↔ η2 η → −10 1 η2 2 → −1 −4 −4 η1(3)+ η3 η1( )+ η4 → −10 −1 −4 η2(11)+ η3 −2 η2( −5)+ η4 η2(5)+ η5 −11 22 → −10 −5 10 −1 −4 −4 −11 22 −10 −5 10 −1 −4 −2 0 ⇒ ρ( Α) = 0 0 −1 −2 η1(−2)+η2 −1 −2 1)+η3 2) A = −2 η1(− → 0 −1 −1 −1 0 −2 10 −2 −1 −2 → 0 −1 −1 ⇒ ρ( Α) = 0 0 h2(-2)+η3 3) A= −1 −1 −5 1 7 −1 → η1( −2)+η2 ( −5)+η3 η1 η1( −7 )+η4 → −1 −7 −15 0 0 −6 1 η3 6 −1 ( −2 )+η3 η2 −7 −15 η2( −2)+η4 → −14 −24 12 −14 −26 η4 −4 +η4 ( ) → −1 −7 −15 0 0 0 −6 −1 −7 −15 0 0 −6 ⇒ ρ( Α) = 4) A= −1 −3 −3 −5 −5 η3 η1↔ → −3 −5 η1( −5)+η2 )+η3 η1( −3 −3 η1 ( −7 )+η4 → −1 −5 → −3 −5 ( −3)+η3 η2 −8 η2 ( −4 )+η4 → 12 27 −31 16 36 −48 → −3 −5 −8 ⇒ ρ Α = ( ) 0 0 −7 0 0 1 η3 ↔ η2 2 16 + η4 η3 − 5) −3 −5 12 27 −31 18 −16 16 36 −48 −3 −5 −8 0 0 −7 0 0 −16 A= 2 −1 −2 −2 η1↔ η2 → −1 −2 −6 −3 −1 −8 −1 −3 −2 −2 2 −1 −2 −1 −2 −6 −3 −1 −8 −1 −3 −2 η1( −2)+ η2 η1( −2)+ η3 η1+ η4 η → 1(3)+ η5 η1( −1)+ η6 −2 −7 −3 −3 −1 η 2↔ η3 → −2 −8 −1 −5 −7 −3 η2( −2)+ η3 η2( 2)+ η4 η → 2+ η5 η2(−2)+ η6 0 0 0 −2 1 −3 −1 −1 −1 0 −4 0 −3 −1 −1 η3+ η5 → η3( −1)+ η6 −2 −3 −1 −7 −3 −2 −8 −1 −5 −7 −3 0 0 0 −2 −3 −1 −1 −1 ⇒ ρ Α = ( ) 0 −4 0 0 0 0 6) A= −1 −1 η1(−2)+ η2 1+ η3 −1 1 ηη → 1(−1)+ η4 η1(−3)+ η5 −8 −5 −12 −7 13 2↔ η3 η → −1 −5 −4 −8 1 −10 −8 −16 −4 −1 1 η2(−3)+ η3 2(−6)+ η4 −5 −4 −8 η → η2( 4)+ η5 −10 −8 −16 −4 h3( −1)+ η4 3+ η5 η → −1 1 5( −4)+ η3 0 −8 −13 −29 η → 0 0 0 −2 −1 −1 1 0 −8 −13 −29 0 −16 −26 −58 0 12 29 −1 1 0 −9 −29 0 0 0 −2 −1 η4↔ η3 h5↔ → −1 1 0 −2 −1 ⇒ ρ( Α) = 0 −9 −29 0 0 7) A= −3 −7 −1 −8 η1↔ η2 → −2 2(−1)+ η3 η → −1 0 0 −8 −22 32 0 0 −1 −1 −8 η 1(−3)+ η −3 −7 η1(4)+ η3 → η1+ η4 −2 3↔ η4 η → −1 0 −1 −8 −22 32 −2 22 −32 0 −1 −8 −22 32 ⇒ ρ( Α) = −1 0 8) A= 1 −1 3 −4 η1( 4)+ η2 −7 −2 η 1( −3)+ η3 → η1( −2)+ η4 −3 −2 2+ η3 ηη → 2+ η4 −1 0 0 η2 5 −1 3 −4 1 3 10 −15 η 4 → 1 −4 −8 12 η4 3 −3 −6 −1 3 −4 −3 −1 −2 −1 −2 −4 −3 ⇒ ρ( Α) = 0 0 9) A= 17 3 1 2(−1)+ η3 η → η2(−1) η4 10) −1 η1(−7)+ η2 −3 10 η1(−17 )+ η3 → η1(−3)+ η4 −7 22 −2 10 −1 η2 −20 −32 4 → 1 η −50 10 −80 10 −5 −8 −1 −5 −8 ⇒ ρ( Α) = 0 0 0 0 −1 −5 −8 −5 −8 −5 −8 A= 10 −1 16 52 −1 −7 1↔ η2 η → η2( −4 )+ η3 10 → η2+ η4 0 −20 0 Bài 2: Biện luận theo tham số λ 1 λ 10 A = 1) 17 2 −1 −1 10 20 17 −1 −10 −3 ⇒ ρ( Α) = hạng ma trận: η2 ↔ η4 2 → λ η2 h1↔ → ↔ η3 η2 → −5 −7 −15 −5 λ−2 1 17 10 λ η1 −8 + η3 ( ) η → 1( −4 )+ η4 −1 10 16 52 −1 −7 η1( −4)+η2 ( −3)+η3 η1 η1( −1)+η4 → 17 10 χ4 χ1↔ → −7 −15 −5 −5 λ−2 η2 +η3 ( ) η2 −2 +η4 ( ) → 0 1 17 10 λ −5 20 −40 −4 λ + −5 → 0 20 −40 0 λ Vậy : - Nếu λ = r(A) = - Nếu λ ≠ r(A) = 1 η3 + η4 5 2) A = λ 1 10 η2 ↔ η4 → 17 λ 1 4 17 10 χ4 χ1↔ → 3 1 17 10 λ χ2 c1↔ → 4 3 17 1 10 λ η1( −2)+η2 ( −7 )+η3 η1 η1( −4)+η4 → −5 −4 → 0 0 0 λ Vậy: - Nếu λ = r(A) = - Nếu λ ≠ r(A) = η2( −5)+η3 η2( −3)+η4 3) A = 3 10 Χ2 ↔ Χ4 → λ −8 → h1( −4 )+η3 η1( −6 )+η4 4) A = −3 → η3 η1↔ → 1 η2 → η4 η3↔ → 10 3 −8 λ −5 −25 −15 −10 −50 λ − 24 −1 −5 −3 0 λ +6 0 0 r(A) = r(A) = 14 10 Χ2 ↔ Χ4 → λ h1(3)+η3 η1( −3)+η4 −5 −4 0 λ 0 0 3 10 −8 λ 10 −5 −25 −15 −10 −50 λ − 24 → 0 0 λ + Vậy: - Khi λ + = ⇔ λ = −6 - Khi λ + ≠ ⇔ λ ≠ −6 η2(5)+ η3 η2(10 )+ η4 η4 η3↔ → −5 −4 −25 10 −20 −15 λ − 12 −3 10 35 21 −4 −20 λ − 12 14 10 η1↔ η3 → λ 1 η2 → −3 10 14 λ 7 35 21 −4 −20 λ − 12 → h2( −7 )+η3 η2( )+η4 Vậy : - 0 0 η3↔ η4 → 0 λ Nếu λ = r(A) = Nếu λ ≠ r(A) = 0 0 λ 0 BÀI TẬP VỀ MA TRẬN NGHỊCH ĐẢO VÀ PHƯƠNG TRÌNH MA TRẬN Bài 1: Tìm ma trận nghịch đảo ma trân sau: 1) A = Ta có: 1 5 η1 3 η1 − + η2 3 η2(3) → (A I)= → − 3 3 −5 η2 − + η1 3 → −4 ⇒ Α−1 = −4 −5 −5 −2 2) A = −9 Ta có: −1 −2 −9 −2 δ −β A = = αδ − βχ = 1.(−9) − (−2).4 = −9 −χ α −4 −1 −1 3) A = Ta có: (A I) = −4 −3 −5 −1 −4 0 −3 1 −5 −1 0 −1 −1 η2(−1) + η1 → −3 1 −5 −1 0 −1 −1 −1 −1 η1( −2)+η2 2) + η3 η1 → −1 −7 −2 η2(− → −1 −7 −2 ( −3)+η3 −2 −13 −3 0 1 −3 −1 −1 −1 −3 11 −4 η3 −7 +η2 ( ) 1) η2(− → −3 η3 → −5 18 −7 ( −4)+η1 0 1 −3 0 1 −3 0 −8 29 −11 η2+η1 → −5 18 −7 0 1 −3 − 29 − 11 Vậy ma trận A ma trận khả nghịch A = − 18 − −3 -1 4) A = Ta có: (A I)= 0 0 η3↔η1 → 0 0 0 → −6 −5 −3 −3 −3 −2 η1( −3)+η2 η1( −2 )+η3 0 η3↔η2 → −3 −3 −2 −6 −5 −3 0 η2 − 0 3 h2(-2)+η3 → −3 −3 −2 → 1 − 0 −2 1 0 −2 −3 −2 → −1 − 3 0 −2 1 h3( −1)+η2 η3( −3)+η1 0 − 5)+η1 η2(− → 0 −2 − − ⇒ Α−1 = −1 − 3 −2 2 5) A = −2 −2 Ta có: −1 − 1 − 2 0 h1( −2 ) + h 2 0 ÷ h1( −2 ) + h ÷ A = −2 ÷ → −3 −6 −2 ÷ −2 0 ÷ −6 −3 −2 ÷ 1 h 2 − ÷ 1 2 3 1 2 0 1 h 3 ÷ h 2( −2 ) + h ÷ 9 → −3 −6 −2 ÷→ − 3 0 −2 ÷ 2 0 − 9 2 1 9 − ÷ 1 0 9 ÷ h 3( −2 ) + h 2 ÷ h 2( −2 ) + h1 h 3( −2 ) + h1 → − → ÷ 9 9 ÷ 0 − ÷ 0 − ÷ 9 9 1 9 9 ÷ ÷ 2÷ −1 ⇒A = − 9 9÷ ÷ − ÷ ÷ 9 9 Bài Giải phương trình ma trận sau 1 2 5 1) ÷X = ÷ 4 9 1 2 5 Đặt A = ÷; B = ÷ 3 4 5 9 Ta có: AX = B ⇔ X = A−1 B −1 −2 1 2 −2 d −b A = ÷ = ÷= ÷= ad − bc −c a 1.4 − 2.3 −3 3 4 −2 −1 −1 ⇒ X = −1 ÷ = ÷ ÷ ÷ 2 3 2 −2 −1 2) X ÷= ÷ −4 −5 −1 10 −1 ÷ ÷ 0÷ ÷ 0÷ ÷ 1÷ ÷ 9 ÷ ÷ 2÷ − 9÷ ÷ ÷ ÷ −5 −3 −1 D= −9 −6 −5 c1↔c −1 −3 ‡ˆ ˆˆ ˆˆ ˆ† ˆˆ − −9 −6 −5 h1+ h h1( −2) + h −1 ‡ˆ ˆˆh1(ˆˆ−1)ˆˆ+ˆhˆ4ˆ†ˆˆ − −1 −1 2 −1 −1 = −1 × −1 − −1 −1 = − ( + 12 − − 12 ) = 4) −3 −5 −3 −6 h 4+ h1 D= ‡ˆ ˆˆ ˆˆ ˆ† ˆˆ −5 −7 −4 −6 −1 0 h1( −3) + h −3 −6 h1( 2) + h ˆ ˆ ‡ ˆh1ˆ(ˆ−4ˆˆ) +ˆhˆ4†ˆˆ −5 −7 −4 −6 −12 −6 = −1× −5 −7 = −1× × −5 −7 −5 −7 −14 −14 = −2 ( 98 + 54 + 150 − 126 − 45 − 140 ) = −2 × ( −9 ) = 18 5) −3 h 3+ h1 −5 h 3+ h ˆ ˆ ˆ D= ‡ ˆh 3(ˆ−ˆ1)ˆ+ˆˆh 4ˆ†ˆˆ −5 −3 −2 −8 −4 −5 4 −1 −1 −5 −3 −2 −3 −1 −3 4 −1 −1 −1 = −21 −3 −18 −21 −3 ‡ˆ ˆˆh1(ˆˆ−3)ˆˆ+ˆhˆ4ˆ†ˆ −21 −3 −18 −15 −1 −15 −15 −1 −15 −1 −15 h1+ h h1( −4) + h = 315 − 270 + 189 − 405 − 126 + 315 = 18 6) 35 −1 0 2 −12 −5 −7 −14 D= −1 −1 1 −1 2 −1 h1( −1)+ h3 h1+ h 1 ‡ˆ ˆˆ ˆhˆ1+ˆˆh 5ˆˆ †ˆˆˆ 1 1 0 0 1 −1 1 −1 −1 = 1× −1 −1 −1 −1 1 −1 −2 −3 −2 −3 −2 −3 h1( −2) + h = 1× −1 −1 ‡ˆ ˆˆh1(ˆˆ−1)ˆˆ+ˆhˆ3ˆ†ˆ −1 −2 −2 −2 = − 12 − + − 16 + 24 = 7) 0 0 −2 D = 18 −6 17 −15 19 20 24 3 18 −6 0 −2 h1↔ h ‡ˆ ˆˆ ˆˆ ˆˆ†ˆ − 0 17 −15 19 20 24 3 18 −6 2 −2 h1( −4) + h ˆˆ ˆˆ ˆ† 0 = −1 × ‡ˆ ˆˆh1(ˆˆ−19) ˆˆ − 0 +h5 −63 −6 −37 −318 117 −33 h2 ‡ˆ ˆˆ ˆˆ†ˆ −( −1) +1 −2 0 0 −63 −6 −37 −318 117 −33 −2 −2 − −6 M 22 = −5 × −37 117 −33 −37 117 = −5 ( −594 − 444 + 1404 − 330 ) = −5 × 36 = −180 8) 36 0 −2 D= 0 0 h1( −1) + h ‡ˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆ†ˆ 0 10 h1( −1) + h ‡ˆ ˆˆ ˆˆ ˆˆ ˆˆ †ˆˆ 15 2 −2 5 0 0 −7 16 h 2( −1)+ h ‡ˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆ†ˆˆ 15 0 1 10 −7 = 1× 15 1 −3 −7 16 h 3+ h ‡ˆ ˆˆ ˆˆ ˆ† ˆˆ −9 15 −7 15 0 1 −7 16 −3 −9 0 = × × (−3) × = −180 9) −9 D= −2 −3 hh1(1( −−1)1) ++ hh 32 ‡ˆ ˆˆ ˆˆ ˆˆ ˆˆ †ˆˆ h1( −1) + h 4 −12 −5 −2 −6 −12 h1↔ h ‡ˆ ˆˆ ˆˆ ˆˆ†ˆ − −3 −5 −2 −2 −6 −3 −2 −12 87 −12 −15 29 −4 −5 29 −4 87 −12 −15 h1( −7) + h ˆˆ ˆˆ ˆˆ ˆ†ˆ − = −1 × − 5 − = −3 × − 5 − −5 ‡ˆ ˆˆh1(2) +h −5 −3 −30 −30 −30 −30 = −3 ( 580 − 360 + 125 − 750 + 435 − 80 ) = −3 × (−50) = 150 37 BÀI TẬP VỀ HỆ PHƯƠNG TRÌNH KRAMER Giải hệ phương trình phương pháp Kramer: + x3 = −1 2 x1 1) x + x + x = x2 + x3 = Ta có: * D = = + – 20 = -7 −1 * Dx1 = = - + 35 – 20 + 10 = 21 −1 * Dx2 = = 14 + – 20 +1 = −1 * Dx3 = = 40 – -70 = -35 Vì D ≠ nên hệ có nghiệm nhất: Dx 21 x = D = − = −3 Dx =− =0 x = D Dx − 35 x = D = − = x − x + 3x = 4x − 5x = −13 2) 3x − x3 = Ta có: −1 * D= − = - +15 – 36 = -29 −2 38 * Dx1= − 13 1 * −1 − = - 48 +5 -12 + 26 = -29 −2 Dx2 = − 13 − = 26 – 90 + 117 +5 = 58 −2 −1 * Dx3 = − 13 = + 39 – 72 = -29 Vì D ≠ nên hệ có nghiệm nhất: Dx − 29 x = D = − 29 = Dx 58 =− = −2 x = D 29 Dx − 29 x = D = − 29 = =2 x1 + x2 − x3 x2 − x3 − x4 = −8 3) − x3 =5 x1 x1 − x2 − 3x4 = Ta có: −1 −1 −3 −5 −3 −3 −5 h1( −2) + h −3 −5 D= ====== = × − −8 −1 h1( −1) + h −8 −6 −3 −6 1 −2 −3 −6 −3 = −6 + 40 − 30 + 72 = 76 −1 −8 −3 −5 c1↔c Dx1 = ====− −1 0 −2 −3 −1 −1 −3 −8 −5 h1( −3) + h2 −10 −14 −5 =====− −1 h1( −1) + h3 −4 0 −2 −3 −2 −3 −10 −14 −5 −10 −14 = −1× −4 −4 −2 −3 −2 = − ( 90 − 30 + 168 ) = −228 39 −1 −1 −8 −3 −5 −8 −3 h1( −2) + h3 −8 −3 −5 −8 −3 −5 Dx2 = ====== = 1× 1 1 −1 h1( −1) + h4 1 −2 −3 −2 1 0 −3 −2 −3 = 24 − − 10 − = 4 2 −8 −5 −8 h1( −2 ) + h3 −8 −5 −8 −5 Dx3 = ====== = × − −8 h1( −1) + h4 −8 −6 −2 −3 −6 −2 −2 −3 −6 −2 −3 = −6 − 80 − 30 + 192 = 76 −1 −1 2 −3 −8 −3 h1( −2 ) + h3 −3 −8 −3 −8 Dx4 = ====== = 1× −8 1 −8 −1 h1( −1) + h4 −8 1 −6 −2 −6 1 −2 0 −6 −2 = −4 + 18 + 64 − 48 − + 48 = 76 Vì D ≠ nên hệ có nghiệm nhất: Dx1 228 x1 = D = 76 = x = Dx2 = = D 76 hay (3,0,1,1) x = Dx3 = 76 = D 76 Dx4 76 x4 = = =1 D 76 − x3 + x4 = x1 2 x − x − x4 = 4) x2 − x3 + x4 = 3x2 − x4 = Ta có: −3 1 −3 −1 −3 −1 −1 h1( −2) + h −1 −3 D= ====== = 1× −5 2 −5 2 −5 −1 −1 −1 = −5 + 36 – 45 + 12 = −2 40 −3 1 −3 −1 −1 c1↔c −1 −1 Dx1 = ======− −5 2 −5 −1 −1 h1+ h2 h1( −2 ) + h3 ======− h1+ h4 −3 −1 −3 −3 −1 −3 = −1× 1 = − ( −6 − − 12 − − + 36 ) = −3 Dx2 = 0 −3 1 −3 −4 −3 0 −1 −4 −3 h1(−2) + h = 1× −5 −5 −5 −1 −1 −1 = −20 + 48 – 60 + 30 = −2 1 −1 −4 −3 −1 −1 h1( −2) + h −1 −4 −3 Dx3 = ====== = 1× 2 2 −1 −1 −1 = – 24 Dx4 = 0 – 24 + 45 + – = −3 −3 −1 −4 −1 0 h1( −2) + h −1 −4 ====== = 1× −5 −5 −5 4 = 20 + 90 − 60 − 48 = Vì D ≠ nên hệ có nghiệm nhất: Dx x = D = − = x = Dx = − = D −2 x = Dx = − = −1 D Dx x = = − = −1 D 41 2 BAØI TẬP BIỆN LUẬN THEO THAM SỐ Bài 1: Giải biện luận: 3x1 + x2 + x3 + x4 = 2 x + x + x + x = x − x − x − 20 x = −11 4 x1 + x2 + x3 + λ x4 = Giaûi: 3 −6 −9 −20 −11 ÷ ÷ ÷ h1↔ h ÷ ( A B ) = −6 −9 −20 −11÷→ ÷ ÷ ÷ λ λ 4 4 −11 1 ÷ h 2 27 ÷ ÷ 3 0 → 20 32 64 36 ÷ h 3 ÷ ÷ 25 40 λ + 80 46 0 −6 −9 −20 −11 1 ÷ 16 ÷ h 3↔ h h 2( −1) + h → → h 2( −5) + h 0 0 0 0 ÷ ÷ λ 0 0 0 x1 − x2 − x3 − 20 x4 = −11 (1) ⇔ x2 + x3 + 16 x4 = (2) λ x4 = 1 → 0 0 h1( −2) + h h1( −3) + h h1( −4) + h −6 −9 15 24 −20 48 − −9 −11 ÷ ÷ 16 ÷ ÷ 25 40 λ + 80 46 −6 −9 −20 −11 ÷ 16 ÷ 0 λ ÷ ÷ 0 0 λ + 3λ t − x1 = − × λ x = − × −9λ + 8λ t + 16 1) Khi λ ≠ : (2) ⇔ λ ( t ∈ R) x3 = t x = λ 1x1 − x2 − x3 − 20 x4 = −11 2) Khiλ = : (3) ⇔ 15 x2 + 24 x3 + 48 x4 = 27 : hệvônghiệ m 0 = Bài 2: Cho hệ phương trình: 42 −20 16 x1 − x2 + x3 + x4 = 4 x − x + x + x = 6 x1 − x2 + x3 + x4 = mx1 − x2 + x3 + 10 x4 = 11 a) Tìm m để hệ phương trình có nghiệm b) Giải hệ phương trình m = 10 Giải: a) Ta coù: −1 −1 ÷ ÷ −2 ÷ c1↔c ↔c1 −2 ÷ ( A B ) = −3 ÷→ −3 ÷ ÷ ÷ ÷ ÷ m −4 10 11 −4 10 m 11 −1 4 5 −1 4 5 ÷ ÷ h1( −2) + h −2 −1 −3 ÷ h 2( −2) + h −2 −1 −3 ÷ h1( −3) + h → → h1( −4) + h −4 − −6 ÷ h 2( −3) + h 0 0 0÷ ÷ ÷ 0 m −8 ÷ ÷ −6 −3 m − −9 −1 4 5 ÷ −2 −1 −3 ÷ h 3↔ h → 0 m −8 ÷ ÷ 0÷ 0 0 Ta thaáy: ∀m ∈ R : r ( A B ) = r ( A ) < Suy hệ có nghiệm với giá trò m b) Giải hệ m = 10: Biến đổi sơ cấp hàng ta coù: −1 −1 ÷ ÷ −2 ÷ −6 −10 −14 ÷ → → ( A / B) = 0 −2 −4 −6 ÷ −3 ÷ ÷ ÷ 0 10 −4 10 11 0 0 x1 = 2 x1 − x2 + x3 + x4 = x = − 2t (1) ⇔ x2 − x3 − 10 x4 = −14 ⇔ ( t ∈ R) x = − t −2 x − x = − x4 = t Baøi Giải biện luận hệ phương trình sau theo tham soá λ : 43 ( λ + 1) x1 + x2 + x3 x1 + ( λ + 1) x2 + x3 x1 + x2 + ( λ + 1) x3 Giải: Ta có λ +1 D= 1 =1 =λ = λ2 λ +3 λ +3 λ +3 1 λ + 1 ‡ˆ ˆˆ ˆˆ ˆˆ ˆˆ†ˆ λ +1 = ( λ + 3) λ + 1 λ +1 1 λ +1 1 λ +1 h 3+ h + h1 1 †ˆˆ ( λ + 3) λ = ( λ + 3) λ ‡ˆ ˆˆh1(ˆˆ−1)ˆˆ+ˆhˆ3ˆ 0 λ h1( −1) + h Dx1 = λ λ2 1 1 h1( − λ ) + h λ + 1 ‡ˆ ˆˆh1(ˆˆ− λˆˆ2 )ˆˆ+hˆ† ˆˆ λ +1 1− λ 1 1− λ = 1× 1− λ −λ + λ + 1− λ −λ + λ + = −λ + λ + − ( − λ ) ( − λ ) = −λ + λ + − + λ + λ − λ = −λ + 2λ = λ ( − λ ) λ +1 1 1 c1↔ c Dx2 = λ ‡ˆ ˆˆ ˆˆ ˆ† λ ˆˆ − 1 λ2 λ +1 λ +1 λ λ +1 1 1 λ +1 λ −1 −λ − λ − − λ = − × ‡ˆ ˆˆh1(ˆˆ− (ˆˆλ +ˆˆ1))ˆ+ˆhˆ† ˆˆ λ − λ − −λ − 2λ 2 λ − λ − −λ − 2λ h1( −1) + h = − ( λ − 1) ( −λ − 2λ ) − ( λ − λ − 1) ( −λ ) = − −λ − 2λ + λ + 2λ + λ − λ − λ = 2λ − λ = λ ( 2λ − 1) λ +1 1 λ +1 c1↔ c Dx3 = λ + λ ‡ˆ ˆˆ ˆˆ ˆ† λ ˆ ˆ − λ +1 1 λ 1 λ2 1 −λ − 2λ −1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ† −1 = − × ‡ ˆ hˆ1(ˆ−1)ˆ+ hˆ3 ˆˆ − −λ − 2λ −λ λ −1 −λ λ −1 h1( − ( λ +1)) + h = λ× λ+2 −1 λ −1 = λ ( λ + ) ( λ − 1) + 1 = λ ( λ + 2λ − λ − 1) Ta thaáy: 44 λ ≠ −3 (1) D = ( λ + 3) λ ≠ ⇔ Khi hệ có nghiệm nhất: λ ≠ Dx1 λ ( − λ ) − λ2 x1 = = = D ( λ + ) λ ( λ + 3) λ Dx2 λ ( 2λ − 1) 2λ − = = x2 = D ( λ + 3) λ ( λ + ) λ Dx λ + 2λ − λ − x3 = = D ( λ + 3) λ (2) Neáu λ = −3 Dx1 = 3(2 − 9) = −21 ≠ : Hệ vô nghiệm (3) Nếu λ = hệ trở thành: x1 + x2 + x3 = x1 + x2 + x3 = x + x + x = Hệ vô nghiệm Bài Giải biện luận hệ phương trình sau theo tham số λ : 5 x1 − x2 + x3 + x4 = 4 x − x + 3x + x = 8 x1 − x2 − x3 − x4 = 7 x1 − 3x2 + x3 + 17 x4 = λ Giaûi −3 −1 −1 −3 ÷ ÷ −2 ÷ h 2( −1)+ h1 −2 ÷ → ( A B ) = −6 −1 −5 ÷ h 2( −2) + h −2 −7 −19 ÷ h 2( −1) + h ÷ ÷ −3 17 λ −1 10 λ − 1 −1 −1 −3 −1 −1 −3 ÷ ÷ 19 −7 ÷ 19 −7 ÷ h1( −4) + h h 2+ h3 → → h1( −3) + h −2 −7 −19 ÷ h 2( −1) + h 0 0 ÷ ÷ ÷ 19 λ − 0 0 λ −1 −1 −3 19 −7 ÷ h 4↔ h ÷ → 0 0 λ ÷ ÷ 0 0 0 Hệ phương trình tương đương với heä: 45 x3 − x4 = x1 − x2 − x2 + x3 + 19 x4 = −7 0= λ Ta thấy: (1)Khi λ ≠ hệ vô nghiệm (2)Khi λ = hệ trở thành: (1) x1 − x2 − x3 − 3x4 = x2 + x3 + 19 x4 = −7 (2) 19 (2) : x2 = − x3 − x4 − 2 19 13 (1) ⇔ x1 + x3 + x4 + − x3 − x4 = ⇔ x1 = − x3 − x4 − 2 2 Vậy nghiệm hệ là: 13 x1 = − x3 − x4 − 19 x2 = − x3 − x4 − 2 y yù x3 , x4 tù Bài Giải biện luận hệ phương trình sau theo tham số λ 3x1 + x2 + x3 + x4 = 2 x + x + x + x = x1 − x2 − x3 − 20 x4 = −11 4 x1 + x2 + x3 + λ x4 = Giải Ta có: 3 −6 −9 −20 −11 ÷ ÷ ÷ h 3↔ h1 ÷ ( A B ) = −6 −9 −20 −11÷→ ÷ ÷ ÷ λ ÷ λ ÷ 4 4 1 h1( −2) + h h1( −3) + h → h1( −4) + h 0 0 −6 15 20 25 −9 −20 −11 −6 −9 −20 −11 ÷ h 3 ↔ h ÷ 24 48 27 ÷ 16 ÷ ÷ 4 → 15 24 32 64 36 ÷ 48 27 ÷ ÷ 25 40 λ + 80 46 ÷ ÷ 40 λ + 80 46 ÷ 46 −6 h 2( −3) + h → h 2( −5) + h 0 0 Khi đó: (1) Nếu λ ≠ −9 −20 −11 −6 −9 −20 −11 ÷ ÷ 16 ÷ h3↔ h 16 ÷ → 0 0 0 ÷ λ ÷ ÷ ÷ 0 0 λ ÷ 0 ÷ r ( A B ) = r ( A ) = < : hệ có vơ số nghiệm (tìm nghiệm trên) (2) Nếu λ = : r ( A B ) = 3 ⇒ r ( A B ) ≠ r ( A ) : hệ vô nghiệm r ( A ) = Bài Giải biện luận hệ phương trình sau theo tham số λ ( λ + 1) x1 + x2 + x3 = λ + 3λ x1 + ( λ + 1) x2 + x3 = λ + 3λ x1 + x2 + ( λ + 1) x3 = λ + 3λ Giải Ta có: λ +1 1 λ +3 λ +3 λ +3 1 h 3+ h + h1 D= λ + 1 ‡ˆ ˆˆ ˆˆ ˆˆ ˆˆ†ˆ λ +1 = ( λ + 3) λ + 1 1 λ +1 1 λ +1 1 λ +1 1 ˆˆˆ ( λ + 3) λ ‡ˆ ˆˆh1(ˆˆ−1)ˆˆ+ˆhˆ3† 0 h1( −1) + h = ( λ + 3) λ λ λ + 3λ 1 λ ( λ + 3) Dx1 = λ + 3λ λ + 1 = λ ( λ + 3) λ + 3λ λ + λ ( λ + 3) 1 ‡ˆ ˆˆh1(ˆˆ− λˆˆ2 )ˆˆ+ hˆ† ˆˆ λ ( λ + 3) 1− λ2 h1( − λ ) + h 1 λ + 1 = λ ( λ + 3) λ λ +1 λ2 1 1− λ = λ ( λ + 3) × 1− λ2 −λ + λ + 1 λ +1 1 λ +1 1− λ −λ + λ + = λ ( λ + 3) −λ + λ + − ( − λ ) ( − λ ) = λ ( λ + 3) −λ + λ + − + λ + λ − λ = λ ( λ + 3) −λ + 2λ = λ ( λ + 3) ( − λ ) 47 λ + λ + 3λ λ + λ ( λ + 3) Dx2 = λ + 3λ = λ ( λ + 3) λ + 3λ λ + 1 λ ( λ + 3) 1 λ ‡ˆ ˆˆ ˆˆ ˆ† ˆˆ −λ ( λ + 3) λ +1 λ c1↔ c = −λ ( λ + ) × 1 λ +1 1 = λ ( λ + 3) λ λ +1 λ2 1 λ +1 λ +1 1 λ +1 h1( −1) + h ‡ˆ ˆˆh1(ˆˆ− (ˆˆλ +ˆˆ1))ˆˆ+ hˆ† λ −1 −λ ˆˆ −λ ( λ + 3) λ − λ − −λ − 2λ λ −1 −λ λ − λ − − λ − 2λ = −λ ( λ + 3) ( λ − 1) ( −λ − 2λ ) − ( λ − λ − 1) ( −λ ) = −λ ( λ + 3) −λ − 2λ + λ + 2λ + λ − λ − λ = −λ ( λ + 3) ( −2λ + λ ) = λ ( λ + 3) ( 2λ − 1) λ +1 λ + 3λ λ +1 λ ( λ + 3) λ +1 1 2 Dx3 = λ + λ + 3λ = λ + λ ( λ + 3) = λ ( λ + 3) λ +1 λ 3 1 λ + 3λ 1 λ ( λ + 3) 1 λ2 λ +1 1 h1( − ( λ +1)) + h 2 λ ‡ˆ ˆˆ ˆˆh1(ˆˆ−1)ˆˆ+ hˆˆ3 ˆ† ‡ˆ ˆˆ ˆˆ ˆ† ˆ ˆ −λ ( λ + ) λ + 1 ˆˆ −λ ( λ + 3) −λ − 2λ 1 λ −λ c1↔ c −1 λ −1 λ+2 −1 −λ − 2λ −1 = −λ ( λ + ) × = λ λ + ( ) λ −1 −λ λ −1 = λ ( λ + 3) ( λ + ) ( λ − 1) + 1 = λ ( λ + 3) ( λ + 2λ − λ − 1) Ta thaáy: λ ≠ ⇒ D ≠ Suy hệ có nghiệm nhaát: (1)Khi: λ ≠ −3 2 Dx1 λ ( λ + 3) ( − λ ) x1 = = = − λ2 D ( λ + 3) λ Dx2 λ ( λ + 3) ( 2λ − 1) x = = = 2λ − 2 D λ + λ ( ) x = Dx3 = ( λ + 3) λ ( λ + 2λ − λ − 1) = λ + 2λ − λ − D ( λ + 3) λ λ = ⇒ D = vaø Dx1 = Dx2 = Dx3 = suy hệ có vô số (2)Khi λ = −3 nghiệm 48 49 ... 43 50 2 2 −1 12 BÀI TẬP VỀ HỆ PHƯƠNG TRÌNH TUYẾN TÍNH Bài 1: Giải hệ phương trình sau: 7 x1 + x2 + x3 = 15 1) 5 x1 − x2 + x3 = 15 10 x − 11x + x = 36 Giải: Ta có: 7 15 2 ... ⇔ ( t, s ∈ R ) x3 = t − x2 − x3 + x4 = x ,x tuø y yù x4 = s BÀI TẬP VỀ ĐỊNH THỨC Bài 30 Tính định thức cấp 2: 1) D = = 5.3 – 7.2 = 15 – 14 = 3 2) D = = 3.5 – 8.2 = 15 – 16 = -1... − x3 = x tuø x = t yý Bài 2: Giải hệ phương trình sau: 2 x1 + x2 − x3 + x4 = 4 x + 3x − x + x = 1) 8 x1 + x2 − x3 + x4 = 12 3x1 + x2 − x3 + x4 = Giải: Ta có: 15 ( 2 A B) =