1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

Thomas calculus 13th edition thomas test bank

87 69 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 87
Dung lượng 1,39 MB

Nội dung

MULTIPLE CHOICE Choose the one alternative that best completes the statement or answers the question Find the average rate of change of the function over the given interval 1) y = x2 + 8x, [4, 9] 153 35 A) B) C) 21 2) y = 7x3 + 5x2 + 2, [-5, 5] 501 A) 1) D) 17 2) B) 350 1002 C) B) C) D) 175 3) y = 2x, [2, 8] A) 10 4) y = 3) D) , [4, 7] x-2 4) A) B) 5) y = 4x2 , 0, C) D) - 10 5) A) C) - B) -34 C) B) 10 D) 6) y = -3x2 - x, [5, 6] A) -2 7) h(t) = sin (5t), 0, A) π 10 10 π 7) B) - 8) g(t) = + tan t, A) - 6) D) 10 π C) π D) π π , 4 π 8) B) - C) D) Find the slope of the curve at the given point P and an equation of the tangent line at P 9) y = x2 + 5x, P(4, 36) 4x A) slope is ;y=+ 25 25 C) slope is π 10 B) slope is -39; y = -39x - 80 x ;y= + 20 20 D) slope is 13; y = 13x - 16 π 9) 10) y = x2 + 11x - 15, P(1, -3) 4x A) slope is ;y=+ 25 25 C) slope is 10) B) slope is -39; y = -39x - 80 x ;y= + 20 20 D) slope is 13; y = 13x - 16 11) y = x3 - 9x, P(1, -8) A) slope is -6; y = -6x C) slope is -6; y = -6x - B) slope is 3; y = 3x - D) slope is 3; y = 3x - 11 12) y = x3 - 2x2 + 4, P(3, 13) A) slope is 1; y = x - 32 C) slope is 15; y = 15x - 32 B) slope is 15; y = 15x + 13 D) slope is 0; y = -32 11) 12) 13) y = - x3 , (1, 3) A) slope is 0; y = C) slope is 3; y = 3x + 13) B) slope is -1; y = -x + D) slope is -3; y = -3x + Use the slopes of UQ, UR, US, and UT to estimate the rate of change of y at the specified value of x 14) x = y U T S R Q A) x B) C) D) 14) 15) x = 15) y U T S R Q A) x B) C) D) 16) x = 16) y U T S R Q A) 2 B) x C) D) 25 17) x = 17) y U T S R Q A) x B) C) D) 18) x = 2.5 18) y U T S Q R A) x B) 7.5 C) 1.25 D) 3.75 Use the table to estimate the rate of change of y at the specified value of x 19) x = x y 0 0.2 0.02 0.4 0.08 0.6 0.18 0.8 0.32 1.0 0.5 1.2 0.72 1.4 0.98 A) 0.5 B) 1.5 C) 19) D) 20) x = x y 0 0.2 0.01 0.4 0.04 0.6 0.09 0.8 0.16 1.0 0.25 1.2 0.36 1.4 0.49 A) 20) B) 1.5 C) 0.5 D) 21) x = x y 0 0.2 0.12 0.4 0.48 0.6 1.08 0.8 1.92 1.0 1.2 4.32 1.4 5.88 A) 21) B) C) D) 22) x = x y 10 0.5 38 1.0 58 1.5 70 2.0 74 2.5 70 3.0 58 3.5 38 4.0 10 A) -8 22) B) C) D) 23) x = x y 0.900 -0.05263 0.990 -0.00503 0.999 -0.0005 1.000 0.0000 1.001 0.0005 1.010 0.00498 1.100 0.04762 A) 23) C) -0.5 B) 0.5 Solve the problem D) 24) When exposed to ethylene gas, green bananas will ripen at an accelerated rate The number of days for ripening becomes shorter for longer exposure times Assume that the table below gives average ripening times of bananas for several different ethylene exposure times: Exposure time (minutes) 10 15 20 25 30 Ripening Time (days) 4.2 3.5 2.6 2.1 1.1 Plot the data and then find a line approximating the data With the aid of this line, find the limit of the average ripening time as the exposure time to ethylene approaches Round your answer to the nearest tenth Days 5 10 15 20 25 30 35 40 Minutes A) B) Days Days 7 6 5 4 3 2 1 10 15 20 25 30 35 40 Minutes 37.5 minutes 2.6 days 10 15 20 25 30 35 40 Minutes 24) C) D) Days Days 7 6 5 4 3 2 1 10 15 20 25 30 35 40 Minutes 5.8 days 10 15 20 25 30 35 40 Minutes 0.1 day 25) When exposed to ethylene gas, green bananas will ripen at an accelerated rate The number of days for ripening becomes shorter for longer exposure times Assume that the table below gives average ripening times of bananas for several different ethylene exposure times Exposure time (minutes) 10 15 20 25 30 Ripening Time (days) 4.3 3.2 2.7 2.1 1.3 Plot the data and then find a line approximating the data With the aid of this line, determine the rate of change of ripening time with respect to exposure time Round your answer to two significant digits Days 5 10 15 20 25 30 35 40 Minutes 25) A) B) Days Days 7 6 5 4 3 2 1 10 15 20 25 30 35 40 Minutes -6.7 days per minute 10 15 20 25 30 35 40 Minutes 5.6 days C) D) Days Days 7 6 5 4 3 2 1 10 15 20 25 30 35 40 Minutes 10 15 20 25 30 35 40 Minutes -0.14 day per minute 38 minutes 26) The graph below shows the number of tuberculosis deaths in the United States from 1989 to 1998 Deaths 2000 1900 1800 1700 1600 1500 1400 1300 1200 1100 89 90 91 92 93 94 95 96 97 Year Estimate the average rate of change in tuberculosis deaths from 1991 to 1993 A) About -45 deaths per year B) About -30 deaths per year C) About -0.4 deaths per year D) About -80 deaths per year 26) Use the graph to evaluate the limit 27) lim f(x) x→-1 27) y -6 -5 -4 -3 -2 -1 B) - x -1 A) -1 C) ∞ D) 28) lim f(x) x→0 28) y -4 -3 -2 -1 x -1 -2 -3 -4 A) does not exist B) -2 C) D) 29) lim f(x) x→0 29) y -6 -5 -4 -3 -2 -1 -1 x -2 -3 -4 -5 -6 A) -3 B) C) D) does not exist 30) lim f(x) x→0 30) 12 y 10 -2 -1 x -2 -4 A) -1 B) C) 10 D) does not exist 318) lim f(x) = 0, lim f(x) = ∞ x→∞ x→0 + 318) y -1 x -1 319) lim f(x) = 1, lim f(x) = -1, lim f(x) = -1, lim f(x) = x→-∞ x→∞ x→0 + x→0 319) y -10 -8 -6 -4 -2 -1 10 x -2 -3 -4 -5 MULTIPLE CHOICE Choose the one alternative that best completes the statement or answers the question Find the limit 320) lim (2x x→∞ 4x2 - 2x + 2) A) 321) lim x→∞ B) 323) lim x→∞ A) C) -∞ D) -2 321) B) lim ( 10x2 + x→∞ A) x2 + 10x - x A) ∞ 322) 320) D) 10x2 - 3) 10 x2 + 5x - C) 10 322) B) C) 10 D) ∞ x2 - 3x 323) B) C) does not exist 73 D) Provide an appropriate response 324) Which of the following statements defines lim f(x) = ∞? x→x0 324) I For every positive real number B there exists a corresponding δ > such that f(x) > B whenever x0 - δ < x < x0 + δ II For every positive real number B there exists a corresponding δ > such that f(x) > B whenever x0 < x < x0 + δ III For every positive real number B there exists a corresponding δ > such that f(x) > B whenever x0 - δ < x < x A) II B) III 325) Which of the following statements defines C) I D) None lim f(x) = ∞? x→(x0)- 325) I For every positive real number B there exists a corresponding δ > such that f(x) > B whenever x0 - δ < x < x0 + δ II For every positive real number B there exists a corresponding δ > such that f(x) > B whenever x0 < x < x0 + δ III For every positive real number B there exists a corresponding δ > such that f(x) > B whenever x0 - δ < x < x A) I B) III 326) Which of the following statements defines C) II D) None lim f(x) = ∞? x→(x0)+ 326) I For every positive real number B there exists a corresponding δ > such that f(x) > B whenever x0 - δ < x < x0 + δ II For every positive real number B there exists a corresponding δ > such that f(x) > B whenever x0 < x < x0 + δ III For every positive real number B there exists a corresponding δ > such that f(x) > B whenever x0 - δ < x < x A) I B) III 327) Which of the following statements defines C) II D) None lim f(x) = -∞? x→x0 327) I For every negative real number B there exists a corresponding δ > such that f(x) < B whenever x0 - δ < x < x0 + δ II For every negative real number B there exists a corresponding δ > such that f(x) < B whenever x0 < x < x0 + δ III For every negative real number B there exists a corresponding δ > such that f(x) < B whenever x0 - δ < x < x0 A) II B) III C) I 74 D) None 328) Which of the following statements defines lim f(x) = -∞? x→(x0 )+ 328) I For every negative real number B there exists a corresponding δ > such that f(x) < B whenever x0 - δ < x < x0 + δ II For every negative real number B there exists a corresponding δ > such that f(x) < B whenever x0 < x < x0 + δ III For every negative real number B there exists a corresponding δ > such that f(x) < B whenever x0 - δ < x < x0 A) I B) III 329) Which of the following statements defines C) II D) None lim f(x) = -∞? x→(x0 )- 329) I For every negative real number B there exists a corresponding δ > such that f(x) < B whenever x0 - δ < x < x0 + δ II For every negative real number B there exists a corresponding δ > such that f(x) < B whenever x0 < x < x0 + δ III For every negative real number B there exists a corresponding δ > such that f(x) < B whenever x0 - δ < x < x0 A) III B) II 330) Which of the following statements defines C) I D) None lim f(x) = ∞? x→-∞ 330) I For every positive real number B there exists a corresponding positive real number N such that f(x) > B whenever x > N II For every positive real number B there exists a corresponding negative real number N such that f(x) > B whenever x < N III For every negative real number B there exists a corresponding negative real number N such that f(x) < B whenever x < N IV For every negative real number B there exists a corresponding positive real number N such that f(x) < B whenever x > N A) I B) III C) IV D) II SHORT ANSWER Write the word or phrase that best completes each statement or answers the question 331) Use the formal definitions of limits to prove lim =∞ x→0 x 331) lim =∞ x x→0 + 332) 332) Use the formal definitions of limits to prove 75 Answer Key Testname: UNTITLED2 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25) 26) 27) 28) 29) 30) 31) 32) 33) 34) 35) 36) 37) 38) 39) 40) 41) 42) 43) 44) 45) 46) 47) 48) 49) 50) C D C D D B A D D D C C D B A A D D C C C C B C D A D A C B B D C D D C B A C C D B C A D C B A D D 76 Answer Key Testname: UNTITLED2 51) 52) 53) 54) 55) 56) 57) 58) 59) 60) 61) 62) 63) 64) 65) 66) 67) 68) 69) 70) 71) 72) 73) 74) 75) 76) 77) 78) 79) 80) 81) 82) 83) 84) 85) 86) 87) 88) 89) 90) 91) 92) 93) 94) 95) 96) 97) 98) 99) 100) D C C B B A D D D C C A A B B D B C B D B C B C D D A C B B C B D D B C A D B B D B C A D A D B B A 77 Answer Key Testname: UNTITLED2 101) 102) 103) 104) 105) 106) 107) 108) 109) 110) 111) 112) 113) 114) 115) 116) 117) 118) 119) 120) 121) 122) 123) 124) 125) 126) 127) 128) 129) 130) 131) 132) 133) 134) 135) 136) 137) 138) 139) 140) 141) 142) 143) 144) B D B B D D B D C C A B C C B A D C D A D D C D D B A D A D A B D A B C C D A D D C A Let ε > be given Choose δ = ε/5 Then < x - < δ implies that (5x - 3) - = 5x - 10 = 5(x - 2) = x - < 5δ = ε Thus, < x - < δ implies that (5x - 3) - < ε 78 Answer Key Testname: UNTITLED2 145) Let ε > be given Choose δ = ε Then < x - < δ implies that x2 - 36 (x - 6)(x + 6) - 12 = - 12 x-6 x-6 for x ≠ = (x + 6) - 12 = x -6 < δ=ε x2 - 36 Thus, < x - < δ implies that - 12 < ε x-6 146) Let ε > be given Choose δ = ε/3 Then < x - < δ implies that 3x2 - 25x- 18 (x - 9)(3x + 2) - 29 = - 29 x-9 x-9 for x ≠ = (3x + 2) - 29 = 3x - 27 = 3(x - 9) = x - < 3δ = ε 3x2 - 25x- 18 Thus, < x - < δ implies that - 29 < ε x-9 147) Let ε > be given Choose δ = min{3/2, 9ε/2} Then < x - < δ implies that 1 3-x = x 3x = 1 ∙ ∙ x-3 x < 1 9ε ∙ ∙ =ε 3/2 Thus, < x - < δ implies that 148) 149) 150) 151) 152) 153) 154) 155) 156) 157) 158) 159) 160) 161) 162) 163) 164) 165) 166) 167) 168) 169) 1 -2, x < y -10 -8 -6 -4 -2-2 -4 -6 10 x -8 -10 318) (Answers may vary.) Possible answer: f(x) = x y -1 x -1 1, x < 319) (Answers may vary.) Possible answer: f(x) = -1, x > y -10 -8 -6 -4 -2 -1 10 x -2 -3 -4 -5 320) 321) 322) 323) 324) 325) 326) 327) 328) 329) 330) B B B A C B C C C A D 86 Answer Key Testname: UNTITLED2 331) Given B > 0, we want to find δ > such that < x - < δ implies Now, > B x 4 > B if and only if x < x B Thus, choosing δ = 4/B (or any smaller positive number), we see that 4 x < δ implies > ≥ B x δ Therefore, by definition lim =∞ x→0 x 332) Given B > 0, we want to find δ > such that x0 < x < x0 + δ implies Now, > B x 2 > B if and only if x < x B We know x0 = Thus, choosing δ = 2/B (or any smaller positive number), we see that x < δ implies 2 > ≥ B x δ Therefore, by definition lim =∞ x x→0 + 87 ... D) Does not exist Given the interval (a, b) on the x-axis with the point x0 inside, find the greatest value for δ > such that for all x, < x - x < δ ⇒ a < x < b 117) a = 7, b = 17, x0 = 10 A) 118)

Ngày đăng: 18/11/2017, 09:01

TỪ KHÓA LIÊN QUAN