Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 15 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
15
Dung lượng
429,93 KB
Nội dung
ĐẠI HỌC ĐÀ NẴNG TRƯỜNG ĐẠI HỌC SƯ PHẠM ĐÀ NẴNG TIỂULUẬNMÔNBẤTĐẲNGTHỨCBẤTĐẲNGTHỨC AM-GM GV HƯỚNG DẪN KHOA HỌC GS.TSKH NGUYỄN VĂN MẬU HỌ VÀ TÊN HỌC VIÊN: PHÙNG THỊ HOÀNG CÚC LỚP K32.TCS.ĐN CHUYÊN NGÀNH PHƯƠNG PHÁP TOÁN SƠ CẤP ĐÀ NẴNG – 2016 MỤC LỤC MỤC LỤC PHẦN MỞ ĐẦU Lý chọn đề tài 2 Phương pháp nghiên cứu: Bấtđẳngthức AM-GM hệ 1.1 Giới thiệu bấtđẳngthức AM-GM 1.2 Các hệ Một số kỹ thuật áp dụng bấtđẳngthức AM-GM 2.1 Đánh giá từ trung bình cộng sang trung bình nhân 2.2 Đánh giá từ trung bình nhân sang trung bình cộng 2.3 Kỹ thuật đổi biến kết hợp chọn điểm rơi 10 KẾT LUẬN 13 MỞ ĐẦU Lý chọn đề tài Trong sống nay, nhiều toán đặt để giải phải đưa giải bấtđẳngthức nhằm đáp ứng nhu cầu thân xã hội Bên cạnh đó, chương trình bậc học THCS THPT có toán liên quan đến bấtđẳngthức kỳ thi Để giải toán đòi hỏi thông minh, tư nhạy bén, vận dụng kiến thức phương pháp học Đề tài nghiên cứu cách tổng quan bấtđẳngthức AM-GM số kỹ thuật áp dụng bấtđẳngthức AM-GM Phương pháp nghiên cứu: Đọc sách, nghiên cứu tài liệu để từ tổng hợp, chọn lọc kiến thức có liên quan để thực đề tài Cấu trúc đề tài Nội dung đề tài bao gồm: Chương I: Giới thiệu bấtđẳngthức AM-GM hệ Chương II: Một số kỹ thuật áp dụng bấtđẳngthức AM-GM Bấtđẳngthức AM-GM hệ Giới thiệu bấtđẳngthức AM-GM 1.1 Với n số không âm a1 , a2 , a3 , , an ta có: a1 a2 a3 an n a1a2 a3 an n Dấu “=” xảy a1 a2 a3 an 1.2 Các hệ Ta có số bấtđẳngthức quen thuộc hệ bấtđẳngthức AM-GM sau: 1.2.1 Hệ a b 2ab a b 2 2 a b 2 2ab Dấu “=” xảy a = b Chứng minh Áp dụng bấtđẳngthức AM-GM ta có ab a b a 2b 2 ab 2ab a b a b Dấu “=” xảy ab ab ab Từ a b2 2ab a b2 a b2 2ab a b Do ta có: a b 2 a b 2 Dấu “=” xảy a b Mặt khác, từ a b2 2ab a b2 2ab 4ab a b 4ab Nên a b 2 2ab Dấu “=” xảy a b 1.2.2 Hệ a b c ab bc ca a b c 2 2 2 a b c ab bc ca Dấu “=” xảy a = b = c Chứng minh Theo hệ a b 2ab 2 2 2 2 b c 2bc a b b c c a 2ab 2bc 2ca c a 2ca a b c ab bc ca a b c ab bc ca a b Dấu “=” xảy b c a b c c a Mà a2 b2 c2 ab bc ca a b2 c ab bc ca 3 a b c 2 a b c a b c 2 a b c Dấu “=” xảy a b c Lại có a b c ab bc ca a b c ab bc ca a b c ab bc ca 1.2.3 Hệ Cho a b 2, ab>0 Dấu “=” xảy a = b b a a hay a (a > 0) Dấu “=” xảy a = Chứng minh a b b a Vì ab > nên a, b dấu , Áp dụng bấtđẳngthức AM-GM: a b a b 2 2 b a b a a b ab ab Dấu “=” xảy b a 2 ab a b a b ab Nếu coi a b 1 a (a > 0) Như ta có: a b a a a a a Dấu “=” xảy a a a 1 a 1.2.4 Hệ 1 1 n2 a1 a2 a3 an a1 a2 a3 an hay 1 1 1 n an a1 a2 a3 a1 a2 a3 an a1, a2 , a3 , , an 0 Dấu “=” xảy a1 a2 a3 an Chứng minh Áp dụng bấtđẳngthức AM-GM ta có a1 a2 a3 an n n a1a2 a3 an 1 1 1 1 n n an a1 a2 a3 an a1 a2 a3 1 1 1 a1 a2 a3 an n an a1 a2 a3 Chia hai vế bấtđẳngthức vừa chứng minh cho a1 a2 a3 an ta có 1 1 n2 a1 a2 a3 an a1 a2 a3 an a1 a2 a3 an Dấu “=” xảy 1 1 a1 a2 a3 an a a a3 an Một số kỹ thuật áp dụng bấtđẳngthức AM-GM 2.1 Đánh giá từ trung bình cộng sang trung bình nhân Bài toán Chứng minh rằng: a2 b2 b2 c2 c2 a2 8a 2b2c2 a, b, c Giải Áp dụng bấtđẳngthức AM-GM cho số không âm ta có a b 2ab 2 b c 2bc c a 2ca a b2 b2 c2 c2 a2 8a2b2c2 ,a, b, c Bài toán Chứng minh rằng: a b 64ab(a b)2 , a, b Giải Ta có a b a b a b ab Áp dụng bấtđẳngthức AM-GM cho số không âm Bài toán a, b, c, d Cho: 1 1 1 a b c d CMR : abcd 81 Giải Từ giả thuyết suy 1 b c d bcd 1 33 1 1 = 1 a 1 b 1 c 1 d 1 b 1 c 1 d 1 b 1 c 1 d Tương tự ta có bcd 3 b 1 c d 1 a cda 1 b 3 c d a dca 1 c 3 d c a abc 3 1 d 1 a b 1 c abcd 0 0 0 1 a 1 b 1 c 1 d 81 abcd 1 a 1 b 1 c 1 d 0 , a, b, c, d ( điều phải chứng minh) 81 Qua ta có Bài toán tổng quát x1 , x2 , x3 , , xn Cho: 1 1 1 x x x x n n Chứng minh x1 x2 x3 xn n 1 n Bài toán a, b, c Cho Chứng minh a b c 1 1 1 (1) a b c Giải Ta có VT (1) 1 a 1 b 1 c b c c a a b bc ca ab (đpcm) a b c a b c a b c Từ ta có Bài toán tổng quát x1 , x2 , x3 , ., xn x1 x2 x3 xn Cho: 1 Chứng minh x1 1 x2 1 x3 1 xn 1 1 n 1 n Bài toán Chứng minh 1 a bc 1 2 3 1 a 1 b 1 c 1 abc abc a, b, c Giải a b c 1 a b Ta có: 1 1 c 1 a 1 b 1 c (1) Ta có: 1 a 1 b 1 c 1 ab bc ca a b c abc 1 33 a2b2c2 33 abc abc abc (2) Ta có: 1 abc 3 1.3 abc abc (3) Dấu “ = ” (1) xảy 1+a = 1+b = 1+c a = b = c Dấu “ = ” (2) xảy ab = bc = ca a = b = c a = b= c Dấu “ = ” (3) xảy abc =1 abc = Từ ta có Bài toán tổng quát Cho x1, x2, x3, , xn CMR: x x x n 1 n n 1 2 n 3 x x x 1 n x x .x 2n x x x n n n 2.2 Đánh giá từ trung bình nhân sang trung bình cộng Bài toán Chứng minh ab cd a c b d a, b, c, d (1) Giải (1) ab a c b d cd Theo BĐT Côsi ta có: a c b d 1 a b 1 c b 1 ac bd VT 1 1 1(đpcm) a c b c a c b d a c b c Bài toán Chứng minh a c (1) c a c c b c ab b c Giải Ta có (1) tương đương với c b c c a c 1 ab ab Áp dụng bấtđẳngthức AM-GM ta có c b c c a c c b c a b c a c 1(đpcm) ab ab b a a b a b Bài toán Chứng minh abc 1 a 1 b 1 c a, b, c (1) Giải Ta có biến đổi (1) tương đương 1.1.1 abc 1 a 1 b 1 c 1.1.1 abc 3 1 1 a 1 b 1 c 1 a 1 b 1 c Áp dụng bấtđẳngthức AM-GM ta có 1.1.1 1 1 (2) 1 a 1 b 1 c 1 a 1 b 1 c abc 1 a b c (3) 1 a 1 b 1 c 1 a 1 b 1 c Cộng (2) (3) vế theo vế ta có 1 1 1 a b c a b c 1 VT 1 a b c 1 a b c 1 a b c Dấu “ = ” xảy a = b = c > Từ ta có Bài toán tổng quát CMR: n a1a2 .an n bb .bn n a1 b1 a2 b2 an bn , bi i 1, n 2.3 Kỹ thuật đổi biến kết hợp chọn điểm rơi Bài toán 10 a, b, c 1 Chứng minh P a b c b c a c a b abc Cho Giải Đặt x 1 , y , z xyz a b c Bài toán trở thành chứng minh: x3 yz y zx z xy x2 y2 z2 yz zx x y y z z x x y Để giải tiếp tục nhận xét điểm rơi x y z P Từ ta giải sau: x2 yz x yz y2 zx y zx z2 x y z x y Cộng vế theo vế ta được: P x yz dấu xảy x y z 2 Bài toán 10 Cho x 0, y 0, z 0, xyz Tìm GTNN biểu thức: P x2 y z y y 2z z y2 z x z z 2x x z2 x y x x 2y y Giải Ta có 11 x2 y z 2x x y2 z x y y z2 x y 2z z 4c a 2b x x a x x y y 4a b 2c Đặt b y y z z suy y y c z z x x 4b c 2a z z Do 2 c a b a b c P 6 4.3 9 b c a b c a Vậy MinP x y z 12 KẾT LUẬNTiểuluận trình bày nội dung bấtđẳngthức AM-GM số kỹ thuật áp dụng bấtđẳngthức AM-GM Dù cố gắng tiểuluận không tránh khỏi nhiều sót Em hy vọng qua tiểuluận nhận nhiều ý kiến đóng góp phương pháp giải toán ứng dụng bấtđẳngthức AM-GM để tiểuluận hoàn chỉnh Em xin chân thành ơn thầy GS.TSKH Nguyễn Văn Mậu nhiệt tình giảng dạy mang đến cho em nhiều kiến thức bổ ích để hoàn thành tiểuluận 13 TÀI LIỆU THAM KHẢO [1] Nguyễn Văn Mậu, 2006, Bấtđẳngthức định lý áp dụng, NXB Giáo dục 14