1. Trang chủ
  2. » Ngoại Ngữ

Secondary Electron Emission From Accelerator Materials-Robert E. Kirby and Frank K. King

24 141 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 24
Dung lượng 0,9 MB

Nội dung

SLAC-PUB-8380 February, 2000 Secondary Electron Emission From Accelerator Materials* Robert E Kirby and Frank K King Physical Electronics Group The Stanford Linear Accelerator Center Stanford University, Stanford, CA 94309 tWork supported by the U.S Department of Energy under contract number DE-AC03-76SF00515 (SLAC) *Presented at the 8th ICFA Beam Dynamics Mini-Workshop on Two-Stream Instabilities in Particle Accelerators and Storage Rings, Santa Fe, NM, February 16-l&2000 Robert E Kirby - SLAC Motivations l Suppress electron emission from high rf surface field components, e.g., SPEAR storage ring cavity tuners (1973) l l l Find a coating for superconducting Nb oxidation prevention (1980) Robert E Kirby - SLAC Develop a simple method for TiN-coating of LER Al alloy beam chambers (1998) Measure yields as a function of primary electron incidence angle, for simulating of the “electron cloud effect (1999).” Secondary Emission Generation /r SUCUUlOry electron / / Specimen Robert E Kirby - SLAC Primary Electron Range (Axes in angstroms) a 11 17 23 a 35 41 47 53 m = o” Robert E Kirby - SLAC E, = 500 eV = 82.5O Backscattered Primaries- Monte Carlo h=lOOeV pz r ” I 90” ifi0 O0 9o” 15O Robert E Kirby - SLAC Uncoated 6061 Al Alloy : * 0 200 400 600 800 1000 Primary Beam Energy (N) Robert E Kirby - SLAC Energy Distribution Of Secondaries -60% -35% -5% O-40 eV 41-295 eV 295310 eV “True” Elastics Rediffused primaries 100 200 Primary Electron Energy (eV) TiN/AI Robert E Kirby - SLAC Experimental Questions To Answer l l l What is the secondary electron yield (SEY), as a function of primary energy and incidence angle? Measure the energy distribution of secondaries How does the yield change with “conditioning”, and what is responsible for the change? Robert E Kirby - SLAC Measured Materials l l LER 6061 Al alloy, TiN-coated HER OFE Cu Robert E Kirby - SLAC l l 304 Stainless Steel Polished OFE Cu, for W-band acceleration Yield Measurement Schematic kE / Robert E Kirby - SLAC 10 Some Accelerator Materials and C HER,Cu 0 200 400 600 8Ml lam 1200 Primary Beam Energy (eV) Lightly Sputtered Robert E Kirby - SLAC 11 LER Chamber Topography Surface Histogram I 1181 94s Area Analysis Z-avg Ra: Rq: Rp-p: 472 Image 2.13pm 0.29pm 0.37um 3.44pm 236 O.OOpm Robert E Kirby - SLAC 0.69pm 1.38pm 2.07vm 2.75pm 3.44pm 12 LER Chamber Topography Robert E Kirby - SLAC 13 Yield vs Incidence Angle 250 500 750 1000 Primary Beam Energy (eV) TiN/AI, Grooves Parallel To Primary Electron Beam, No Conditioning Robert E Kirby - SLAC 14 Yield vs Angle (after Bruining) oo=Nse-aXm oe = N, e -(aXm~0s0) oe ho = Robert E Kirby - SLAC e a xm (1-cos e) 15 Angular Dependance, TiN/Al l 0.75 Before Conditioning + After Conditioning I I I I I I 15 30 45 60 75 90 Normal Incidence Angle Robert E Kirby - SLAC 16 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I Angular Dependance, HER Cu Ion-Sputtered GDC Simulation 1.75 1.50 Do B 1-25 1.00 0.75 I I I I I 15 30 45 60 75 xl Normal IncidenceAngle Robert E Kirby - SLAC 18 Electron Yield vs “Conditioning” 200 I.80 1.60 1.40 Pf) 1.20 o.oaM 0.001 O.Ol 0.1 I 1100 eV Electron Dose (co&cm-*) TiN/6061 Al, Smooth Surface Robert E Kirby - SLAC 19 Yield vs Incidence Angle 0 250 500 750 1000 Primary Beam Energy (eV) TiN/AI, Grooves Parallel To Circulating Beam, 0.2 coul-~rn-~ Exposure Robert E Kirby - SLAC 20 “Conditioned” TiN/ Al 1.80 TlN-coated 6063AlAlloy, Normal Incidence 1.60 1.40 1.20 I.00 0.80 o.oaM o.cuM O.Ol 0.1 I 1100 eV Electron Dose (coul-cm-2) Robert E Kirby - SLAC 21 Conditioning Cross-section o=o,exp(-DQk) - oO is the yield prior to bombardment - D is the dose in coul-cm-2 - Q is th e cross-section in cm2 - E is the electronic charge in coulombs Robert E Kirby - SLAC 22 Possible Causes of Electron-Induced SEY Reduction 0 0 0 Thermal desorption of surface gases Electron desorption of surface gases Dissociation of carboneous gasesto carbon Reduction of aromatic HCs to polymers Desorption of water Reduction of high-yield oxides A combination of these Robert E Kirby - SLAC Conclusions From Data l l l l Most electron-generated secondaries will have low energy (- eV) and

Ngày đăng: 21/12/2016, 08:37

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w