1. Trang chủ
  2. » Giáo án - Bài giảng

bài 6: Đường Tròn

17 535 1
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 0,93 MB

Nội dung

1 Bài 6 ĐƯỜNG TRÒN I/ Phương trình đường tròn + Trong mặt phẳng, cho đường tròn ( C ) có tâm I(a;b), có bán kính R . M(x;y) (C) khi và chỉ khi : IM = R ∈ ⇔ 222 Rb)(ya)(x =−+− ⇔ (x – a) 2 + (y - b) 2 = R 2 Từ đó ta có PT của đường tròn tâm I(a;b) , bán kính R là : (x – a) 2 + (y – b) 2 = R 2 + Ngược lại PT : x 2 + y 2 - 2ax - 2by + c = 0 ⇔ x 2 + y 2 - 2ax - 2by + a 2 + b 2 = a 2 + b 2 - c ⇔ (x - a) 2 + (y - b) 2 = a 2 + b 2 – c Khi a 2 + b 2 – c > 0 đây là PT của đường tròn tâm I(a;b) , bán kính R = cba 22 −+ 2 + Như vậy PT của đường tròn còn có dạng : x 2 + y 2 + 2ax + 2by + c = 0 với a 2 + b 2 – c > 0 II/ Ví dụ : 1. Viết PT đường tròn biết : a) Đường trònđường kính AB , với A(-5;1) , B(3; - 7) . b) Đường tròn có tâm I( 3 ; - 5 ) và tiếp xúc với đường thẳng (d) : 4x – 3y - 2 = 0 c) Đường tròn đi qua 3 điểm A(-3;1) , B(3; 0) ,C(0;-1). Giải a) + Tâm I là trung điểm của AB : I(-1;-3) + Bán kính R = 24 2 28 2 6464 2 == + = AB Vậy PT của đường tròn là : (x + 1) 2 + (y + 3) 2 = 32 3 b) + Tâm I (3;- 5) + Đường tròn tiếp xúc với đường thẳng (d) : 4x – 3y - 2 = 0 5 5 25)3.(4.3 d[I/(d)]R = −−− ==⇔ Vậy PT đường tròn là : (x – 3) 2 + (y + 5) 2 = 25 c) + PT đường tròn có dạng : x 2 + y 2 + 2ax + 2by + c = 0 + Đường tròn đi qua 3 điểm A(-3;1) , B(3; 0) ,C(0;-1).          =+− =++ =++− ⇔ 0c2b1 0c6a9 0c2b6a10          = −=+ =−− ⇔ 1 9 1 c-2b c6a 0c2b6a            − = − = − = ⇔ 3 20 6 17 18 7 c b a Vậy PT đøng tròn là : 0 3 20 3 17 9 7 22 =−−−+ yxyx 4 2. Cho đường cong (C) có PT : x 2 + y 2 + 2(m – 1)x – 6my + 9m 2 + 4 = 0 Tìm m để (C) là một đường tròn , xác đònh tâm và bán kính của (C) Giải Ta có : a = m – 1 ; b = - 3m ; c = 9m 2 + 4 (C) Là đường tròn khi : a 2 + b 2 – c > 0 ⇔ (m – 1) 2 + 9m 2 – 9m 2 - 4 > 0 ⇔ m 2 – 2m - 3 > 0 ⇔ m < - 1 ; m > 3 Vậy với m < - 1 hoặc m > 3 thì (C) là một đường tròn có tâm I(- m + 1 ; 3m ) và bán kính 32mmR 2 −−= 5 3. Xác đònh tâm và bán kính của các đường tròn sau : a) x 2 + y 2 – x + 3y – 4 = 0 b) - x 2 – y 2 + 4x – 6y + 5 = 0 c) 2x 2 + 2y 2 – 3x – y - 1 = 0 Giải 4c ; 2 3 b; 2 1 a : có Ta a) −== − = Vậy tâm 2 26 4 4 9 4 1 R kính bánvà ) 2 3- ; 2 1 I( =++= b) – x 2 – y 2 + 4x – 6y + 5 = 0 x 2 + y 2 - 4x + 6y - 5 = 0 a = - 2 ; b = 3 ; c = - 5 ⇔ Ta có : Vậy tâm 23594 =++=R kính bánvà I(2;-3) c) 2x 2 + 2y 2 - 3x - y - 1 = 0 ⇔ x 2 + y 2 - 3/2 x - 1/2 y - 1/2 = 0 6 2 1 c ; 4 1 b; 4 3 a −=−=−= Ta có : Vậy tâm 4 2 2 1 16 1 16 9 R kính bánvà ) 4 1 ; 4 3 I( 3 =++= III/ Phương tích của một điểm đối với một đường tròn . Cho đường tròn (C) : x 2 + y 2 + 2ax + 2by + c = 0 và điểm M(x 0 ;y 0 ) . P (M/(C)) = IM 2 - R 2 = (x 0 + a) 2 + (y + b) 2 - a 2 - b 2 + c + (C) có tâm I(-a;-b) , bán kính R = + ta có : cba 22 −+ = x 0 2 + y 0 2 + 2ax + 2by + c IV/ Trục đẳng phương của hai đường tròn . P (M/(C)) = x 0 2 + y 0 2 + 2ax + 2by + c Vậy 7 Cho hai đường tròn không đồng tâm : (C 1 ) : x 2 + y 2 + 2a 1 x + 2b 1 y + c 1 = 0 (C 2 ) : x 2 + y 2 + 2a 2 x + 2b 2 y + c 2 = 0 M(x;y) thuộc trục đẳng phương khi và chỉ khi : P (M/(C 1 )) = P (M/(C 2 )) ⇔ x 2 + y 2 + 2a 1 x + 2b 1 y + c 1 = x 2 + y 2 + 2a 2 x + 2b 2 y + c 2 ⇔ 2a 1 x + 2b 1 y + c 1 - 2a 2 x - 2b 2 y - c 2 = 0 ⇔ 2(a 1 - a 2 )x + 2(b 1 - b 2 ) y + c 1 - c 2 = 0 (1) Vì a 1 – a 2 và b 1 – b 2 không đồng thời bằng 0 nên (1) là phương trình của đường thẳng . Như vậy PT của trục đẳng phương là : 2(a 1 - a 2 )x + 2(b 1 - b 2 ) y + c 1 - c 2 = 0 8 8 Bài 1: Tìm tâm và bán kính các đường tròn sau: a) x 2 + y 2 - 2x- 2y- 2 = 0 b) 16x 2 +16y 2 +16x -8y = 11. c) . GIẢI a) x 2 + y 2 -2x -2y -2 = 0 . Ta có: -2a = -2 a = 1. -2b =-2 b = 1. c = -2. Vậy tâm của đường tròn là I(1;1). Bán kính đường tròn là R = 4) 2 3 () 2 5 ( 22 = + + − yx ⇔ 2211 22 =++=−+ cba ⇔ BÀI TẬP 9 9 b)16x 2 + 16y 2 + 16x - 8y = 11. x 2 + y 2 + x - . ta có : -2a = -1 . -2b = . . Vậy tâm của đườnh tròn là T ( ). Bán kính của đường tròn là : R = . c) . . . Vậy tâm của đường tròn I(5;-3) . Bán kính của đường tròn : R = = 4. ⇔ 0 16 11 2 1 =−y 2 1 −=⇒ a 4 1 2 1 =⇒− b 16 11 −= c 4 1 ; 2 1 − 1 16 11 16 1 4 1 =++ 4) 2 3 () 2 5 ( 22 = − + − yx 16 16)3()5( 22 =++−⇔ yx 4 4 )3( 4 )5( 22 = − + − yx 10 10 • Bài 2 Viết pt đường tròn biết: a) Qua A(1;2) và có tâm I(-3;1) • b) Qua ba điểm A(1;2), B(-3;0), C(3;-2) • c) Tâm I(1;2) và tiếp xúc với đường thẳng d :x+2y-3 =0 • d) Qua A(1;2);B(3;1), có tâm nằm trên đường thẳng :7x+2y-3=0 GIẢI a)Viết pt đ tròn qua A(1;2) và có tâm I(-3;1). Vì đường tròn tâm I(-3;1) và qua A(1;2) nên có bán kính R = IA = Pt đường tròn tân I(-3;1) có bán kính R= là: (x+3) 2 +(y-1) 2 = 17 b) Viết pt đtròn qua 3 điểm A(1;2), B(-3;0), C(3;-2) Cách 1 Gọi đ tròn ( C) : x 2 +y 2 -2ax -2by +c = 0 Vì ( C) qua 3 điểm A(1;2) ,B(-3;0) , C(3 ;-2) nên ∆ 17)12()31( 22 =−++ 17 [...]... ∈∆ ⇔ { 4 Do đó pt đ tròn 9 2 185 ( x + 1) + ( y + ) = 2 4 4 2 12 Bài 3 : Cho đường tròn ( C) : x2 + y2 -4x +8y -5 =0 và 2 điểm A ( -1;0), B(3;-11) a) Tìm toạ độ tâm và bán kính đường tròn b) tính A /(c ) , ρ B /(c ) Suy ra vò trí tương đối của A và B đối với (C) c) Viết pttt của đường tròn đi qua điểm A(-1;0) d) Viết pttt của đường tròn đi qua điểm B(3;-11) e) Viết pttt của đường tròn biết t.tuyến song... biết t.tuyến song song với d: 2x-y = 0 GIẢI a)Tìm toạ độ tâm và bán kính đường tròn: ( C) x2 + y2 - 4x+8y - 5 =0 Tâm đường tròn : I (2;-4) Bán kính đường tròn : R = 4 + 16 + 5 = 25=5 A /(c ) = 1 + 4 – 5 = 0 ⇒ A( -1;0) b) ( C) ρ B /(c ) = 9 + 121 – 12 – 88 – 5 = 25 > 0 nên B nằm ngoài đường tròn ρ ρ ∈ 13 c)Viết pttt của đường tròn ( C) đi qua A( -1;0) Vì A(-1;0) ( C) nên Pttt của ( C) qua A(-1;0) có... − x + y + 4 + 11 = 0 4 4 Bài 4 Gọi ( C m ) là đường có pt : ⇔ − 4 x + 3 y + 45 = 0 x2 + y2 - 2(m+2) x + 4my +19m -6 = 0 a) tìm m để( C m) là đường tròn b)Tìm m để ( C m) là đường tròn có bán kính bằng 10 c) Tìm tập hợp tâm các đường tròn ( C m ) GIẢI a) ( C m ) :x2 + y2 - 2(m+2 )x + 4my+ 19m - 6 = 0 Ta có :-2a = - 2(m+2) a = m+2 -2b = 4m b = -2m ; c = 19m -6 ( C m) là đường tròn ⇔ a2 + b2 –c2 > 0 ⇔... C) là đường tròn 15 m ⇔ ⇔ b)Tìm m để ( C m ) là đường tròn có bán kính bằng 10: Cm) là đường tròn có bán kính 2 2 2 2 2 R = a + b − c = (m + 2) + 4m − 19m + 6 = 5m − 15m + 10 Để ( C m ) có bán kính bằng 10 Khi m 2 thì ( ⇔ R = 10 ⇔5m − 15m + 10 ⇔ 5m -15m + 10 = 100 ⇔ m – 3m -18 = 0 ⇔ m=6 v m= -3 2 = 10 2 2 Vậy m = 6 v m = - 3 thì ( C m có bán kính R = 10 ) c) Tìm tập hợp tâm các đường tròn (... +y2 +2x -9 =0 C2) Gọi tâm đ tròn I(a;b) Vì đ tròn đi qua A,B,C nên IA = IB ⇔ IA2 = IB2 IA = IC IA2 = IC2 (1-a)2 + (2-b)2 = (-3-a)2 + b2 ⇔ (1-a)2 + ( 2-b)2 = (3-a)2+( -2-b)2 2a +b = -1 ⇔ a=0 a-2b = 2 b=-1 Vậy tâm I(0;-1) , bán kính R = IA = 10 do đó ptđt : (x-0)2 + ( y + 1 )2 = 10 11 { { ⇔ { { { c) Viết pt đ tròn tâm I ( 6; 1) và t xúc với đường thẳng d: x+2y-3=0 Vì đường tròn tâm I(6;1) tiếp xúc với... ( C m có bán kính R = 10 ) c) Tìm tập hợp tâm các đường tròn ( C m) Với m 2 thì (C m) là đường tròn tâm I (m+2;-2m) ⇒ Do { [ xI = m + 2 y I = −2 m m< 1 m> 2 ⇒ ⇔ { [ m = xI − 2 y I = 2( xI − 2) ⇒ xI − < 2 1 x − > 2 2 ⇔ { m = xI − 2 2 xI + y I − 4= 0 [ xI < 3 16 Vậy tập hợp các tâm đường tròn là phần đường thẳng 2x + y – 4 = 0 x4 { - @ -@ -@ -@ HẾT -@ -@ -@ -@ 17 ... pttt của đường tròn ( C) đi qua A( -1;0) Vì A(-1;0) ( C) nên Pttt của ( C) qua A(-1;0) có VTPT = (3;-4) là 3(x+1) -4( y-0) = 0 3x -4y +3 = 0 d) Viết pttt củ ( C) qua B (3;-11) Vì B(3;-11) nằm ngoài đ tròn nên đương thẳng qua B có dạng: A(x-3) + B ( y+11 ) = 0 Ax + By -3A +11 B = 0 Do ∆ tiếp xúc với ( C) 2 A − 4 B − 3 A −11B d(I; ∆ ) = R =5 ∈ n ⇔ ∆ ⇔ ⇔ ⇔ ⇔ − A + 7B ⇔ IA A2 + B 2 =5 A + B A2 -14AB + . : 1. Viết PT đường tròn biết : a) Đường tròn có đường kính AB , với A(-5;1) , B(3; - 7) . b) Đường tròn có tâm I( 3 ; - 5 ) và tiếp xúc với đường thẳng. 1 Bài 6 ĐƯỜNG TRÒN I/ Phương trình đường tròn + Trong mặt phẳng, cho đường tròn ( C ) có tâm I(a;b), có bán kính R

Ngày đăng: 16/06/2013, 01:27

TỪ KHÓA LIÊN QUAN

w