The function of DTRAF1 in drosophila neuroblast asymmetric cell division

145 225 0
The function of DTRAF1 in drosophila neuroblast asymmetric cell division

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

THE FUNCTION OF DTRAF1 IN DROSOPHILA NEUROBLAST ASYMMETRIC CELL DIVISION WANG HUASHAN NATIONAL UNIVERSITY OF SINGAPORE 2006 THE FUNCTION OF DTRAF1 IN DROSOPHILA NEUROBLAST ASYMMETRIC CELL DIVISION WANG HUASHAN A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY INSTITUTE OF MOLECULAR AND CELL BIOLOGY DEPARTMENT OF ANATOMY NATIONAL UNIVERSITY OF SINGAPORE 2006 ACKNOWLEDGEMENTS Firstly, I would like to thank my parents, sister, wife and all the relatives I love and love me for their support, love and encouragement throughout all these years. Secondly, I would like to thank A/P Xiaohang Yang and Prof. William Chia, for their taking me as a student in the lab, their continuous guidance and supervision throughout these years. Thirdly, I would like to thank the members of my post-graduate committee, A/P Mingjie Cai, A/P Li Benjamin and Dr. Sami Bahri, for their invaluable discussions and suggestions pertaining to the project. Fourthly, I would like to thank the past and present members of BC/YXH lab and LSC lab, especially Dr. Yu Cai and Dr. Chanhe Chen, for encouraging discussions, suggestions, assistance and all the happy time spent together. In addition, I would like to acknowledge the contributions of the various administrative and technical staffs in IMCB, especially Mohd Sharudin bin for his help on the generation of antibodies. All to my grandmother, you are always in my heart. 4th April, 2006 Wang Huashan i TABLE OF CONTENTS ACKNOWLEDGEMENTS i TABLE OF CONTENTS ii ABBREVATIONS vi SUMMARY xiii Chapter1. Introduction 1. Asymmetric cell division in C. elegans 1.1 The establishment of the anterior-posterior (AP) body axis 1.2 The formation of cortical domains 1.3 Cortical domains are required for asymmetric events in the early embryo 1.3.1 The control of spindle positioning during the first mitotic division of the C. elegans zygote 1.3.2 The polarized distribution of cell-fate determinants along the AP axis 2. Asymmetric cell division in Drosophila melanogaster 10 13 2.1 Asymmetric division of neuroblasts in the Drosophila central nervous system 2.1.1 Establishment of apical–basal NB polarity 2.1.2 Asymmetric localization of cell fate determinants and ii 13 15 the control of spindle orientation in NBs 17 2.1.3 Cell size regulation during NB divisions 22 2.1.4 Asymmetric localization and function of cell-fate determinants 25 2.1.5 Telophase rescue and Insc-independent mechanism 28 2.2 Asymmetric division of sense organ precursor cells in the Drosophila peripheral nervous system 2.3 Establishing polarity in Drosophila germline cyst during oogenesis 3. The cell polarity and asymmetric cell division in vertebrate 30 33 37 3.1 Asymmetric cell divisions during neurogenesis in developing vertebrate central nervous system 3.2 Establishing cell polarity in mammalian epithelial cells 4. TNF pathway 37 45 48 4.1. TNF 49 4.2. TNF receptor 50 4.3. Tumor necrosis factor receptor associated factor 53 4.3.1. TRAF family members 53 4.3.2. Domains and structures of TRAF proteins 54 4.3.3. Recruitment of TRAFs to signaling receptors 55 4.3.4. TRAF-activated signal transduction pathways 57 4.3.4.1. TRAF-mediated activation of NF-κB 57 4.3.4.2. TRAF-mediated activation of JNK 58 iii Chapter2. Materials and Methods 60 2.1 Molecular work 61 2.1.1 Recombinant DNA methods 61 2.1.2 Strains and growth conditions 61 2.1.3 Cloning strategy 62 2.1.4 Transformation of E. coli cells 63 2.1.5 Plasmid DNA preparation 64 2.1.6 Site-directed mutagenesis 68 2.1.7 PCR reaction 69 2.1.8 Protein analysis 70 2.1.9 Generation of polyclonal antibody 70 2.1.10 In vitro protein binding assay 72 2.2 Fly genetics iv 72 2.2.1 Embryo fixing 73 2.2.2 Whole embryo RNA in-situ hybridization 75 2.2.3 Embryo antibody staining 77 2.2.4 Double-stranded RNA interference 78 2.2.5 Mobilization of EP-element 79 2.2.6 Inverse PCR 80 2.2.7 Fly genomic DNA extraction 81 2.2.8 Single fly DNA extraction 82 2.2.9 Southern blot for the detection of deletion in fly genome 82 2.2.10 Germ line transformation 84 2.2.11 Ectopic expression 85 2.2.12 Antibodies 85 2.2.13 Confocal analysis and image processing 85 Chapter3. Result and discussion 87 3.1 Background 88 3.2 Results 92 3.2.1 DTRAF1 is apically localized in mitotic NBs 92 3.2.2 Cell fate determinants Mira/Pros and Pon/Numb are normal in DTRAF1 mutant NBs 96 3.2.3 DTRAF1 is required for Mira/Pros normal crescent formation at metaphase in insc NBs 97 3.2.4 Mira telophase rescue is compromised in the absence of DTRAF1 99 3.2.5 Apical localization of DTRAF1 is required for Mira/Pros telophase rescue 102 3.2.6 Egr, Drosophila homolog of TNF, is involved in Mira telophase rescue 3.2.7 DTRAF1 interacts with Baz in vitro 3.3 Discussion 104 107 107 Reference 114 Appendix 131 v ABBREVIATIONS a.a. amino acid APC adenomatous polyposis coli protein Baz bazooka bp base pair BSA bovine serum albumin CIP calf intestinal phosphatase Crb crumbs CRD cysteine-rich domain C-terminus carboxy-terminus DaPKC Drosophila atypical protein kinase C DASK Drosophila apoptosis signal-regulating kinase DD death domain DIAP Drosophila inhibitor-of-apoptosis protein DISC death-inducing signaling complex DNA deoxyribonucleic acid DLG discs Large DmPar6 Drosophila melanogaster Par6 E-APC epithelial-cell-enriched APC ECM extracelluar matrix E.coli Esherichia coli EDTA ethylenediamine tetraacetic acid Esg escargot F-actin filamentous actin FADD fas associated death domain GDI guanine-nucleotide dissociation inhibitor GFP green fluorescent protein GJ gap junction GMC ganglion mother cell vi GST glutathione S-transferase Gαi α subunit of heterotrimeric G protein Gβ13F β subunit of heterotrimeric G protein on chromosome 13F Hid head involution defective IgG immunoglobin G Insc inscuteable IP immunoprecipitation IPTG isopropyl-1-thio-β-D-galactopyranoside Kb kilobases Lgl lethal giant larvae LT lymphotoxin Mira miranda MTOC microtubule-organizing center MZ marginal zone MAGUK membrane-associated guanylate kinase N-terminus amino-terminus PAGE polyacrylamide gel electrophoresis PCR polymerase chain reaction PDZ domain PSD-95, discs large, ZO-1 domain Pins partner of Inscuteable Pon partner of Numb Pros prospero Rpr reaper Scrib scribbled Sna snail SPCC sperm pronucleus/centrosomal complex Std stardust TIM TRAF-interacting motif TIR Toll/IL-1R homology region TLR Toll-like receptor vii TNF tumor necrosis factor TNFR tumor necrosis factor receptor TRAF tumor necrosis factor associated factors TRADD TNFR-associated death domain WT wild-type Wor worniu ZA zonula adherens Summary In the past decade, Drosophila melanogaster has been proven to be an excellent model for studying the mechanisms of asymmetric cell division, which generates cell diversity during animal development. In this thesis I analyze telophase rescue in detail in insc mutant NBs and report that DTRAF1 is specifically involved in telophase rescue for the cell fate determinant Mira/Pros but not for Pon/Numb. DTRAF1 is localized to the apical cortex of mitotic NBs and interacts with Baz in vitro. I demonstrate that telophase rescue is compromised when DTRAF1 is removed or delocalized from the apical cortex in various genetic backgrounds. I also show that Eiger, the Drosophila homolog of TNF, is required for telophase rescue. My data provide the first evidence that in Drosophila embryonic CNS, the TNF signal pathway is involved in Mira/Pros telophase rescue. viii References Huynh J.R., Shulman J.M., Benton R. & St Johnston D., 2001a. PAR-1 is required for the maintenance of oocyte fate in Drosophila. Development 128: 1201–1209. Huynh J. R., Petronczki M., Knoblich J. A. & St Johnston D., 2001b. Bazooka and PAR-6 are required with PAR-1 for the maintenance of oocyte fate in Drosophila. Curr. Biol. 11: 901–906. Hyman A.A., White J.G., 1987. Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans. J. Cell Biol. 105:2123–35. Igaki T., Hiroshi K., Yuki Y.G., Hirotaka K., Erina K., Toshiro A. and Masayuki M., 2001. The EMBO Journal 21: 3009-3018. Ikeshima-Kataoka H, Skeath J.B., Nabeshima Y., Doe C.Q., Matsuzaki F., 1997. Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature 390:625–29 Imler J. L. and Hoffmann J. A., 2001. Toll receptors in innate immunity. Trends Cell Biol. 11: 304-311. Itoh M. et al., 2001. Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J. Cell Biol. 154: 491–497. Izumi Y., et al. 1998. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J. Cell Biol. 143: 95–106. Izumi Y., Ohta N., Itoh-Furuya A., Fuse N., Matsuzaki F., 2004. Differential functions of G protein and Baz–aPKC signaling pathways in Drosophila neuroblast asymmetric division. J. Cell Biol. 164:729-738. Jan Y.N. and Jan L.Y., 1993. The peripheral nervous system. In The development of Drosophila melanogaster (ed. M. Bate and A. Martinez Arias), pp. 1207–1244. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Johnson K., Wodarz A., 2003. A genetic hierarchy controlling cell polarity. Nat. Cell Biol. 5: 12–14. Kaltschmidt J.A., Davidson C.M., Brown N.H., Brand A.H., 2000. Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system. Nat. Cell Biol. 2: 7–12. Kanta H., Igaki T., Kanuka H., Yagi T., Miura M., 2002. Wengen, a member of the Drosophila tumor necrosis factor receptor superfamily, is required for Eiger signaling. J. Biol. Chem. 277: 28372-28375. 120 References Kauppila S., Maaty S.A.W., Chen P., Tomar S.R., Eby T.M., Chapo J., Chew S., Rathore N., Zachariah S., Sinha K.S., Abrams1 M.J., and Chaudhary M.P. 2003. Eiger and its receptor, Wengen, comprise a TNF-like system in Drosophila. Oncogene 33: 4860-4867. Kischkel F.C., Hellbardt S., Behrmann I. et al., 1995. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14: 5579–88. Kischkel F.C., Lawrence D.A., Chuntharapai A. et al., 2000. Apo2L/TRAILdependent recruitment of endogenous FADD and caspase-8 to death receptors and 5. Immunity 12:611–20. Klezovitch O., Fernandez T.E., Tapscott S.J., and Vasioukhin V., 2004. Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Genes & Dev. 18: 559–571. Knoblich J.A., Jan L.Y., Jan Y.N., 1995. Asymmetric segregation of Numb and Prospero during cell division. Nature 377: 624–27. Koch E.A. & Spitzer R.H., 1983. Multiple effects of colchicine on oogenesis in Drosophila: induced sterility and switch of potential oocyte to nurse-cell developmental pathway. Cell Tissue Res. 228: 21–32. Kosodo Y., Roper K., Haubensak W., Marzesco A.M., Corbeil D., and Huttner W.B., 2004. Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J. 23: 2314-2324. Krajewska M., Krajewski S., Zapata J.M., Van Arsdale T., Gascoyne R.D., Berern K., McFadden D., Shabaik A., Hugh J., Reynolds A., Clevenger C.V., Reed J.C., 1998. TRAF-4 expression in ephithelial progenitor cells. Analysis in normal adult, fetal, and tumor tissues. Am. J. Pathol. 152: 1549-1561. Kraut R. and J.A. Campos-Ortega. 1996. inscuteable, a neural precursor gene of Drosophila, encodes a candidate for a cytoskeleton adaptor protein. Dev. Biol. 174: 65–81. Kraut R., Chia W., Jan L.Y., Jan Y.N., Knoblich J.A., 1996. Role of inscuteable in orienting asymmetric cell divisions in Drosophila. Nature 383: 50–55. Kuchinke U., Grawe F., Knust E., 1998. Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka. Curr. Biol. 8: 1357–1365. Kuranaga E., Kanuka H., Igaki T., Sawamoto K., Ichijo H., Okano H., Miura M., 2002. Reaper-mediated inhibition of DIAP1-induced DTRAF1 degradation results in activation of JNK in Drosophila. Nat. Cell Biol. 4: 705-710. Lechler T. & Fuchs E. 2005. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437: 275-80 121 References Levitan D.J., Boyd L., Mello C.C., Kemphues K.J., Stinchcomb D.T., 1994. par-2, a gene required for blastomere asymmetry in Caenorhabditis elegans, encodes zinc-finger and ATP-binding motifs. Proc. Natl. Acad. Sci. USA 91: 6108–12. Li H.S., Wang D., Shen Q., Schonemann M.D., Gorski J.A., Jones K.R., Temple S., Jan L.Y., and Jan Y.N., 2003. Inactivation of Numb and Numblike in embryonic dorsal forebrain impairs neurogenesis and disrupts cortical morphogenesis. Neuron 40: 1105–1118. Li L., Vaessin H., 2000. Pan-neural Prospero terminates cell proliferation during Drosophila neurogenesis. Genes & Dev. 14: 147–151. Li P, Yang X, Wasser M, Cai Y, Chia W., 1997. Inscuteable and Staufen mediate asymmetric localization and segregation of prospero RNA during Drosophila neuroblast cell divisions. Cell 90:437–47. Lin H., Yue L. & Spradling A. C., 1994. The Drosophila fusome, a germlinespecific organelle, contains membrane skeletal proteins and functions in cyst formation. Development 120: 947–956. Liu H., Su Y.C., Becker E., Treisman J. and Skolnik E. Y., 1999. A Drosophila TNF-receptor-associated factor (TRAF) binds the ste20 kinase Misshapen and activates Jun kinase. Curr. Biol. 9: 101-104. Locksley R.M., Killeen N., Lenardo M.J., 2001. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501. Lu B., Rothenberg M., Jan L.Y., Jan Y.N., 1998. Partner of Numb colocalizes with Numb during mitosis and directs Numb asymmetric localization in Drosophila neural and muscle progenitors. Cell 95:225–35 Lu B., Usui T., Uemura T., Jan L., and Jan Y.N., 1999. Flamingo controls the planar polarity of sensory bristles and asymmetric division of sensory organ precursors in Drosophila. Curr. Biol. 9: 1247–1250. Lu B., Ackerman L., Jan L.Y., and Jan Y.N., 1999. Modes of protein movement that lead to the asymmetric localization of partner of Numb during Drosophila neuroblast division. Mol. Cell 4: 883–891. Lu B., Jan L., and Jan Y.N., 2000. Control of cell divisions in the nervous system: symmetry and asymmetry. Annu. Rev. Neurosci. 23: 531–556. Manabe N., Hirai S., Imai F., Nakanishi H., Takai Y., and Ohno S., 2002. Association of ASIP/mPAR-3 with adherens junctions of mouse neuroepithelial cells. Dev. Dyn. 225: 61–69. Marin V.A., Evans T.C., 2003. Translational repression of a C.elegans Notch mRNA by the STAR/KH domain protein GLD-1. Development 130:2623–32. 122 References Masson R., Regnier C.H., Chenard M.P., Wendling C., Mattei M.G., Tomasetto C., Rio M.C., 1998. Mech. Dev. 71: 187-91. Matsuzaki F., Koizumi K., Hama C., Yoshioka T., Nabeshima Y., 1992. Cloning of the Drosophila prospero gene and its expression in ganglion mother cells. Biochem. Biophys. Res. Commun. 182:1326–32 McGrail M. & Hays T.S., 1997. The microtubule motor cytoplasmic dynein is required for spindle orientation during germline cell divisions and oocyte differentiation in Drosophila. Development 124: 2409–2419. Medema J.P., Scaffidi C., Kischkel F.C. et al., 1997. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J. 16:2794–804. Mello C.C., Draper B.W., Krause M., Weintraub H., Priess J.R. 1992. The pie-1 and mex-1genes and maternal control of blastomere identity in early C. elegans embryos. Cell 70:163–76. Mello C.C., Schubert C., Draper B., Zhang W., Lobel R., Priess J.R. 1996. The PIE-1 protein and germline specification in C.elegans embryos. Nature 382:710– 12. Miller K.G., Rand J.B. 2000. A role for RIC-8 (Synembryn) and GOA-1 (G(o)alpha) in regulating a subset of centrosome movements during early embryogenesis in Caenorhabditis elegans. Genetics 156:1649–60. Moffett S., Brown D.A., Linder M.E. 2000. Lipid-depending targeting of G proteins into rafts. J. Biol. Chem. 275:2191-2198. Moreno E., Yan M., Basler K., 2002. Evolution of TNF signaling mechanisms: JNK-dependent apoptosis triggered by Eiger, the Drosophila homolog of the TNF superfamily. Curr. Bio. 12: 1263-1268. Mosialos G., Birkenbach M., Yalamanchili R., VanArsdale T., Ware C. and Kieff E., 1995. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 80: 389-399. Muzio M., Chinnaiyan A.M., Kischkel F.C. et al., 1996. FLICE, a novel FADDhomologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85:817–27. Muzio M., Ni J., Feng P., Dixit V.M., 1997. IRAK (Pelle) family member IRAK2 and MyD88 as proximal mediators of IL-1 signaling. Science278:1612–5. Nie J. et al., 2002. LNX functions as a RING type E3 ubiquitin ligase that targets the cell fate determinant Numb for ubiquitin-dependent degradation. Embo J. 21: 93−102. 123 References Noctor S.C., Martinez-Cerdeno V., Ivic L., and Kriegstein A.R., 2004. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7: 136-144. Ohshiro T., Yagami T., Zhang C., Matsuzaki F., 2000. Role of cortical tumoursuppressor proteins in asymmetric division of Drosophila neuroblast. Nature 408: 593–596. Ohno S., 2001. Intercellular junctions and cellular polarity: the PAR-aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr. Opin. Cell Biol. 13: 641–648. Park Y.C., Burkitt V., Villa A.R., Tong L., Wu H., 1999. Structural basis for selfassociation and receptor recognition of human TRAF2. Nature398:533–8. Parmentier M.L., Woods D., Greig S., Phan P.G., Radovic A., Bryant P., O’Kane C.J., 2000. Rapsynoid/partner of inscuteable controls asymmetric division of larval neuroblasts in Drosophila. J Neurosci 20: RC84. Peng C.Y., Manning L., Albertson R., Doe C.Q., 2000. The tumoursuppressor genes lgl and dlg regulate basal protein targeting in Drosophila neuroblasts. Nature 408: 596–600. Pennica D., Nedwin G.E., Hayflick J.S., Seeburg P.H., Deyrynck R., Palladino M.A., Kohr W.J., Aggarwal B.B., and Goeddel D., 1984. Human tumor necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 312: 724–729. Petersen P.H., Zou K., Hwang J.K., Jan Y.N., and Zhong W., 2002. Progenitor cell maintenance requires numb and numblike during mouse neurogenesis. Nature 419: 929–934. Petronczki M., Knoblich J.A., 2001. DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila. Nat. Cell Biol. 3: 43–49. Pokrywka N. J. & Stephenson E. C., 1995. Microtubules are a general component of mRNA localization systems in Drosophila oocytes. Dev. Biol. 167: 363–370. Pombo C.M., Kehrl J.H., Sanchez I. et al., 1995. Activation of the SAPK pathway by the human STE20 homologue germinal centre kinase. Nature 377:750–4. Preiss A., Johannes B., Nagel A. C., Maier D., Peters N. and Wajant H. 2001. Dynamic expression of Drosophila TRAF1 during embryogenesis and larval development. Mech. Dev. 100: 109-113. Reese K.J., Dunn M.A., Waddle J.A., Seydoux G., 2000. Asymmetric segregation of PIE-1 in C. elegans is mediated by two complementary mechanisms that act through separate PIE-1 protein domains. Mol. Cell 6: 445–55. 124 References Rhyu M.S., Jan L.Y., Jan Y.N., 1994. Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76: 477–491. Rice D.S., Northcutt G.M. & Kurschner C., 2001. The Lnx family proteins function as molecular scaffolds for Numb family proteins. Mol. Cell. Neurosci. 18: 525−540. Locksley R.M., Killeen N., and Lenardo M.J., 2001.The TNF and TNF Receptor Superfamilies: Integrating Mammalian Biology. Cell, Vol. 104: 487–501. Roegiers F., Younger-Shepherd S., Jan L.Y., and Jan Y.N., 2001a. Two types of asymmetric divisions in the Drosophila sensory organ precursor cell lineage. Nat. Cell Biol. 3: 58–67. Roegiers F., Younger-Shepherd S., Jan L.Y., Jan Y.N., 2001b. Two types of asymmetric divisions in the Drosophila sensory organ precursor cell lineage. Nat. Cell Biol. 3: 58–67 Rose L.S., Kemphues K.J., 1998. Early patterning of the C. elegans embryo. Annu. Rev. Genet. 32:521–45. Rothe M., Wong S.C., Henzel W.J., Goeddel D.V., 1994. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 78:681–92. Sanada K., Tsai L.H., 2005. G protein betagamma subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors. Cell 122:119-131. Saurin A.J., Borden K.L., Boddy M.N., Freemont P.S., 1996. Does this have a familiar RING? Trends Biochem Sci 21:208–14. Schaefer M., Shevchenko A., Knoblich J.A., 2000. A protein complex containing Inscuteable and the Galpha-binding protein Pins orients asymmetric cell divisions in Drosophila . Curr. Biol. 10: 353–362. Schaefer M., Petronczki M., Dorner D., Forte M., Knoblich J.A., 2001. Heterotrimeric g proteins direct two modes of asymmetric cell division in the Drosophila nervous system. Cell 107: 183–194. Schneider S.Q. and Bowerman B., 2003. Cell polarity and the cytoskeleton in the Caenorhabditis elegans zygote. Annu. Rev. Genet. 37: 221– 49. Schober M., Schaefer M., Knoblich J.A., 1999. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 402: 548–551. 125 References Schubert C.M., Lin R., de Vries C.J., Plasterk R.H., Priess J.R., 2000. MEX-5 and MEX-6 function to establish soma/germline asymmetry in early C.elegans embryos. Mol. Cell 5:671–82. Schuldt A.J., Adams J.H.J., Davidson C.M., Micklem D.R. Haseloff J. et al., 1998. Miranda mediates asymmetric protein and RNA localization in the developing nervous system. Genes & Dev. 12:1847–57. Severson A.F., Baillie D.L., Bowerman B., 2002. A formin homology protein and a profilin are required for cytokinesis and Arp2/3–independent assembly of cortical microfilaments in C. elegans. Curr.Biol. 12:2066–75. Seydoux G., Mello C.C., Pettitt J., Wood W.B., Priess J.R., Fire A., 1996. Repression of gene expression in the embryonic germ lineage of C. elegans. Nature 382:713–16. Shen C.P., Jan L.Y., Jan Y.N 1997. Miranda is required for the asymmetric localization of Prospero during mitosis in Drosophila. Cell 90:449–58. Shen C.P., Knoblich J.A., Chan Y.M., Jiang M.M., Jan L.Y., Jan YN., 1998. Miranda as a multidomain adapter linking apically localized Inscuteable and basally localized Staufen and Prospero during asymmetric cell division in Drosophila. Genes & Dev. 12: 1837–46. Shen Q., Zhong W., Jan Y.N., and Temple S. 2002. Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts. Development 129: 4843–4853. Shi S.H., Jan L.Y., Jan Y.N., 2003. Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell 112: 63–75. Shulman, J. M., Benton, R. & St Johnston D. 2000. The Drosophila homolog of C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localization to the posterior pole. Cell 101, 377–388. Siegrist S.E., Doe C.Q., 2005. Microtubule-induced Pins/Galphai cortical polarity in Drosophila neuroblasts. Cell 123:1323-35. Skeath J.B., Doe C.Q., 1998. Sanpodo and Notch act in opposition to Numb to distinguish sibling neuron fates in the Drosophila CNS. Development 125:1857– 65. Spana E.P., Doe C.Q., 1995. The prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. Development 121: 3187–3195. Spana E.P., Kopczynski C., Goodman C.S., Doe C.Q., 1995. Asymmetric localization of numb autonomously determines sibling neuron identity in the Drosophila CNS. Development 121: 3499-3494. 126 References Spana E.P. & Doe C.Q., 1996. Numb antagonizes Notch signaling to specify sibling neuron cell fates. Neuron 17: 21−26. Stanger B.Z., Leder P., Lee T.H., Kim E., Seed B., 1995. RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81:513–23. Stephen J.P. and Brian K.H., 1998. Polarity and division site specification in yeast. Current Opinion in Microbiology 1:678-686. Susini L. et al., 2001. Siah-1 binds and regulates the function of Numb. Proc. Natl. Acad. Sci. USA 98: 15067−15072. Suzuki A. et al., 2001. Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epitheliaspecific junctional structures. J. Cell Biol. 152: 1183–1196. Tabuse Y., Izumi Y., Piano F., Kemphues K.J., Miwa J., Ohno S., 1998. Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development 125:3607–14. Takeuchi M., Rothe M., Goeddel D., 1996. Anatomy of TRAF2. Distinct domains for nuclear factor-_B activation and association with tumor necrosis factor signaling proteins. J. Biol. Chem. 271:19935–42. Tepass U., Truong K., Godt D., Ikura M. & Peifer M., 2000.Cadherins in embryonic and neural morphogenesis. Nature Rev. Mol. Cell Biol. 1: 91–100. Tio M., Zavortink M., Yang X., Chia W., 1999. A functional analysis of inscuteable and its roles during Drosophila asymmetric cell divisions. J. Cell Sci. 112:1541-51. Tio M., Udolph G., Yang X., Chia W., 2001. cdc2 links the Drosophila cell cycle and asymmetric division machineries. Nature 409: 1063–1067. Tomancak P. et al., 2000. A Drosophila melanogaster homologue of Caenorhabditis elegans par-1 acts at an early step in embryonic-axis formation. Nature Cell Biol. 2: 458–460. Tung R.M., Blenis J., 1997. A novel human SPS1/STE20 homologue, KHS, activates Jun N-terminal kinase. Oncogene 14:653–9. Uemura T., Shepherd S., Ackerman L., Jan L.Y., Jan Y.N., 1989. Numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell 58:349–60 Urano F., Wang X., Bertolotti A. et al., 2000. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287:664–6. 127 References Urbach R., Schnabel R., Technau G.M., 2003. The pattern of neuroblast formation, mitotic domains and proneural gene expression during early brain development in Drosophila. Development 130: 3589–3606. Vaessin H., Grell E., Wolff E., Bier E., Jan L.Y., Jan Y.N., 1991. prospero is expressed in neuronal precursors and encodes a nuclear protein that is involved in the control of axonal outgrowth in Drosophila. Cell 67:942–53 Varfolomeev E. E. and Ashkenazi A., 2004. Tumor Necrosis Factor: An Apoptosis JuNKie? Cell 116: 491–497, Verdi J.M. et al., 1999. Distinct human NUMB isoforms regulate differentiation vs. proliferation in the neuronal lineage. Proc. Natl. Acad. Sci. USA 96: 10472−10476. Vinot S., Le T., Maro B. and Louvet-Vallee S., 2004. Two PAR6 proteins become asymmetrically localized during establishment of polarity in mouse oocytes. Curr. Biol. 14: 520–525. Wakamatsu Y., Maynard T.M., Jones S.U. and Weston J.A., 1999. NUMB localizes in the basal cortex of mitotic avian neuroepithelial cells and modulates neuronal differentiation by binding to NOTCH-1. Neuron 23: 71–81. Wallenfang M.R. and Seydoux G., 2000. Polarization of the anterior-posterior axis of C. elegans is a microtubule-directed process. Nature 408:89–92. Wang H., Ng K.H., Qian H., Siderovski D.P., Chia W., Yu F., 2005. Ric-8 controls Drosophila neural progenitor asymmetric division by regulating heterotrimeric G proteins. Nat. Cell Biol. 7: 1091-8. Ware C.F., 2003. Introduction-The TNF Superfamily. Cytokine & Growth Factor Reviews 14: 181–184. Watts J.L., Etemad-Moghadam B., Guo S., Boyd L., Draper B.W. et al., 1996. par-6, a gene involved in the establishment of asymmetry in early C. elegans embryos, mediates the asymmetric localization of PAR-3. Development 122:3133–40. Wodarz A., Ramrath A., Kuchinke U., Knust E., 1999. Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 402: 544–547. Wodarz, A., 2000. Tumor suppressors: linking cell polarity and growth control. Curr. Biol. 10: R624–R626. Wodarz A., Ramrath A., Grimm A., Knust E., 2000. Drosophila atypical protein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. J. Cell Biol. 150: 1361–1374. 128 References Wodarz A., 2001. Cell polarity: no need to reinvent the wheel. Curr. Biol. 11: R975–R978. Wodarz A., 2002. Establishing cell polarity in development. Nat. Cell Biol. 4: E39–E44. Wodarz A. & Huttner W.B., 2003. Asymmetric cell division during neurogenesis in Drosophila and vertebrates. Mech. Dev. 2003 120:1297-1309. Wodarz A., 2005. Molecular control of cell polarity and asymmetric cell division in Drosophila neuroblasts. Current Opinion in Cell Biology 17:475–481. Xie Y. et al., 2001. Identification of a human LNX protein containing multiple PDZ domains. Biochem. Genet. 39: 117−126. Yang H., McNally K., McNally F.J., 2003. MEI-1/katanin is required for translocation of the meiosis I spindle to the oocyte cortex in C.elegans. Dev. Biol. 260: 245-259. Yamanaka T. et al., 2001. PAR-6 regulates aPKC activity in a novel way and mediates cell-cell contactinduced formation of the epithelial junctional complex. Genes Cells 6: 721–731. Ye X., Mehlen P., Rabizadeh S., VanArsdale T., Zhang H., Shin H., Wang J.J., Leo E., Zapata J., Hauser C.A., Reed J.C. and Bredesen D.E., 1999. TRAF family proteins interact with the common neurotrophin receptor and modulate apoptosis induction. J. Biol. Chem. 274: 30202-30208. Yeh X., Mehlen P., Rabizadeh S., Van Arsdale T., Zhang H., Shin H., Wang J.J.L., Leo E., Zapata J., Hauser C.A., Reed J.C., 1999. TRAF family proteins interact with the common neutrophin receptor and modulate apoptosis induction. J. Biol. Chem. 274: 30202-30208. Yu F., Morin X., Cai Y., Yang X., Chia W., 2000. Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell 100: 399–409. Yu F., Morin X., Kaushik R., Bahri S., Yang X., Chia W., 2003. A mouse homologue of Drosophila pins can asymmetrically localize and substitute for pins function in Drosophila neuroblasts. J. Cell Sci. 116: 887-96. Yu F., Cai Y., Kaushik R., Yang X, Chia W., 2003. Distinct roles of Galphai and Gbeta13F subunits of the heterotrimeric G protein complex in the mediation of Drosophila neuroblast asymmetric divisions. J. Cell Biol, 162: 623-33. Yu F., Wang H., Qian H., Kaushik R., Bownes M., Yang X., Chia W., 2005. Locomotion defects, together with Pins, regulates heterotrimeric G-protein 129 References signalling during Drosophila neuroblast asymmetric division. Genes & Dev. 19: 1341-1353. Zapata J.M., Shu-ichi M., Godzik A., Leo E., Wasserman S.A., and Reed J.C., 2000. The Drosophila tumor necrosis factor receptor-associated factor-1 (DTRAF1) interacts with Pelle and regulates NFkappaB activity. J. Biol. Chem. 275: 12102-12107. Zhong W., Feder J.N., Jiang M.M., Jan L.Y. and Jan Y.N., 1996. Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron 17: 43–53. Zhong W., Jiang M.M., Weinmaster G., Jan L.Y. and Jan Y.N., 1997. Differential expression of mammalian Numb, Numblike and Notch1 suggests distinct roles during mouse cortical neurogenesis. Development 124: 1887–1897. Zigman M., Cayouette M., Charalambous C., Schleiffer A., Hoeller O., Dunican D., McCudden C.R., Firnberg N., Barres B.A., Siderovski D.P., and Knoblich J.A., 2005. Mammalian Inscuteable Regulates Spindle Orientation and Cell Fate in the Developing Retina. Neuron 48: 539–545. 130 Appendix Appendix Table1. Antibiotics Stock solutions Working Antibiotic concentration Concentration Storage (dilution) Ampicillin (sodium 50 mg/ml in water –20°C salt) 100 µg/ml (1/500) 34 mg/ml in Chloramphenicol –20°C 170 µg/ml (1/200) ethanol Kanamycin 10 mg/ml in water –20°C 50 µg/ml (1/200) Streptomycin 10 mg/ml in water –20°C 50 µg/ml (1/200) Tetracycline HCl mg/ml in ethanol –20°C 50 µg/ml (1/100) Table2. Laemmli SDS-PAGE Gel Unit: ml Lower Gel(20ml) 5% 8% 10% 12% 15% 20% 30% Acry-Bis 3.33 5.33 6.67 10 13.3 65% Sucrose 0.77 1.18 1.56 2.5 3.13 4.66 10X Lower Buffer 20 H2 O 13.8 11.48 9.75 7.5 4.88 10% APS 1/100 TEMED 1/100 131 Appendix Unit: ml Stacking Gel (10 ml) 4% 30%Acrylamide-bis 1.34 X Stacking buffer 2.5 H2 O 6.1 10% APS 1/100 TEMED 1/500 Table3. EST clones used in RNA in-situ hybridization Cloning Sites Sequence Primers RNA Vector EST Digestion enzyme 5’-end 3’-end 5’ 3’ Polymerase GH pOT2 EcoRI XhoI T7 PM001 SP6 EcoRI LP pOT2 EcoRI XhoI T7 PM001 SP6 EcoRI SD pOT2 EcoRI XhoI T7 PM001 SP6 EcoRI AT pOTB7 EcoRI XhoI PM001 T7 T7 EcoRI RE pFLC-I XhoI BamHI T7 T3 T3 NotI(SacI, EcoRI) RH pFLC-I XhoI BamHI T7 T3 T3 NotI(SacI, EcoRI) EcoRI XhoI T3 T7 T7 NotI(EcoRI) EcoRI XhoI T7 PM001 SP6 EcoRI pBlue-SK(01001LD 21096) LD pOT2(21101~) pFLC-I~3.0kb 132 pOT2-1665bp pOTB7-1815bp Appendix Table4. Fly stocks used Name Genotype Source DTRAF1L2 Deletion of the DTRAF1 coding region Make in this study nem22-DTRAF1L2 Double mutant of Insc and DTRAF1 Make in this study eiger66 Deletion of the Eiger coding region Make in this study nem22-eiger66 Double mutant of Insc and Eiger Make in this study eiger66--DTRAF1L2 Double mutant of Eiger and DTRAF1 Make in this study nem22 EMS allele for inscuteable laboratory collection BazXi106 Null allele for bazooka gene laboratory collection Transgenic fly carrying UAS-Gαi construct UAS-Gαi laboratory collection for UAS/Gal system overexpression Delete N-terminus about 300 aa of Pins, pins laboratory collection p89 antigen-minus allele Delete most coding region of pins locus, pins laboratory collection p62 antigen-minus allele gal4 driver inserted into the downstream of laboratory collection sca-gal4 scabrous promoter region Transgenic fly carrying UAS-insc (full UAS-insc length) construct for UAS/Gal system laboratory collection overexpression Table5. Primers used in this study 133 Appendix Name Sequence Pwht1 5’-ACG CTA ATC ACT CCG AAC AGG TCA CA-3’ Plac1 5’-CAC CCA AGG CTC TGC TCC CAC AAT-3’ Plac4 5’-ACT GTG CGT TAG GTC CTG TTC ATT GTT-3’ Pry1 5’-CCT TAG CAT GTC CGT GGG GTT TGA AT-3’ Pry2 5’-CTT GCC GAC GGG ACC ACC TTA TGT TAT T-3’ Pry4 5’-CAA TCA TAT CGC TGT CTC ACT CA-3’ Plw3-1 5’-TGT CGG CGT CAT CAA CTC C-3’ Sp1 5’-ACA CAA CCT TTC CTC TCA ACA A-3’ Spep-1 5’-GAC ACT CAG AAT ACT ATT C-3’ T3 5’-GTA ATC CGA CTC ACT ATA GGG C-3’ T7 5’-AAT TAA CCC TCA CTA AAG GG-3’ FLP-5’ 5’- GAG AAG TTC CTA TTC CGA AGT TCC -3’ FLP-3’ 5’- ACT TTC TAG AGA ATAG GAA CTT CGG-3’ FLP-5’ -1 5’-CGC ACT AGT T TC TCG GTA CTA TGC -3’ FLP-3’-1 5’-GCA GCA TAT TAC AGC CGT ATG GGT C-3’ malE 5’-GGTCGTCAGACTGTCGATGAAGCC-3´ M13 5’-CGCCAGGGTTTTCCCAGTCACGAC-3’ Eiger-NdeI-5’ 5’-ccatATGACTGCCGAGACCCTCAAGCCG -3’ Eiger-3’ 5’-ccTTACACCTTGAAGATGCCAAAGTAGCTTCGG -3 Eiger-180-3’ 5’-ccTTACTGCCAGATCGTTAGTGCGAG-3’ Eiger-180-NdeI-5’ 5’-ccatATGACAACGCGTGTATCGCATCTGGAC-3’ Wengen-NdeI-5’ 5’-ccatATGATGCCGCCAAGACTGCCAGGCGG -3’ Wengen-3’ 5’- ccTCAGCCCTTCAGGCCGGAACAGCCGC-3’ Wengen-600-3’ 5’-ccTCAAGTCTGCCAGTCAAGGACCCAGG-3’ 134 Appendix Wengen-600-NdeI-5’ 5’-ccatATGGGCGTTCTTTACGTGGCCGTGC-3’ DTRAF1-NcoI-5’ 5’-cgcgccATGGTTCGAAGTTTGGCCCAGTGG-3’ DTRAF1-999-3’ 5’-ccTTACAGAGTGCCTGTGTAGTTGATGG-3’ DTRAF1-670-EcoRI-5’ 5’-gatcGAATTCTCGGCTGACACACTGCCC-3’ DTRAF1-1000-NdeI-5’ 5’-cgcgcatatgTTGTGGAAGATCACCGACTGGTCG-3’ DTRAF1-XhoI-3’ 5’-ggccctcgagTTAGACGGCCACTATCTTGCTG-3’ 135 [...]... embryonic cells 12 Chapter1 Introduction 2 Asymmetric cell division in Drosophila melanogaster Drosophila melanogaster provides another excellent model for understanding the mechanisms behind asymmetric cell division during animal development The complexity of neuronal cell types in the central nervous system (CNS) of Drosophila is generated by the asymmetric cell division of stem-celllike precursors, neuroblasts... proteins are present in the NB cortex and could thus be more directly involved in the targeting or tethering of cell- fate determinants to the basal cortex Interestingly, Lgl binds to the non-muscle myosin II Zipper and restricts the protein to the apical cortex Myosin II is activated by Rho kinase and regulates the basal localization of the determinants by excluding them from the apical cortex During... central region of Insc, which is sufficient for the asymmetric localization of Insc, is also required for its interaction with Baz and Pins At the same time, the carboxyl terminus of Insc, containing the predicted a-helices, binds to the carboxyl terminus of Staufen (Tio et al., 1999) Insc is necessary for the asymmetric segregation of basal cell fate determinants and the spindle reorientation In insc mutant... localization of cell fate determinants and the control of spindle orientation in NBs Within dividing NBs, two conserved apical complexes act together with the actin cytoskeleton to divide the cell cortex into apical and basal domains One consists of the atypical protein kinase C (DaPKC) and two PDZ (PSD95/Discs large/ZO1 domain)-containing proteins, DmPar6 and Bazooka (Baz), the other is composed of the GoLoCo... motif-containing protein, ‘Partner of Inscuteable’ (Pins) and its associated G-protein subunit (Gαi) An adaptor protein, Inscuteable (Insc), forms the ‘apical complex’ by linking these two apical complexes by the direct interaction of Insc with Pins and Baz (Allison et al., 2004) All these six proteins are colocalized in the apical cortex of NBs In each group, the apical localization of each member is interdependent... restricted to the anterior cortex of the one -cell zygote after the SPCC-induced polarization of the AP axis The RING-finger protein PAR-2 and the serine/threonine kinase PAR-1 become restricted to the posterior cortex (Levitan et al., 1994; Guo & Kemphues, 1995; Boyd et al., 1996) The boundaries of these two cortical domains abut roughly midway along the AP axis In the absence of any one of the anterior... the faithful segregation of determinants Extrinsic mechanism involves cell cell communication In metazoans, interactions between daughter cells or between a daughter cell and other nearby cells could specify daughter cell fate Recent studies have indicated that a combination of intrinsic and extrinsic mechanisms specify distinct daughter cell fates during asymmetric cell divisions I will focus my introduction... myosin II prevents determinants from localizing apically At anaphase and telophase, myosin II moves to the cleavage furrow and appears to “push” rather than carry the determinants into the GMC Therefore, the movement of 21 Chapter1 Introduction myosin II to the contractile ring not only initiates cytokinesis but also completes the partitioning of the cell- fate determinants from the NB to its daughter cells... centrosome away from the cortex, leading to basal displacement of the spindle 24 Chapter1 Introduction 2.1.4 Asymmetric localization and function of cell- fate determinants The invariability of the lineage of neurons and glia that each NB produces could be a function of either invariant extrinsic cues each NB and its progeny receive or a stereotyped segregation pattern of intrinsic cell fate determinants Recent... Recent studies indicate that intrinsic factors play important roles in cell fate determination during NB division During the asymmetric division of NBs, the cell- fate determinants and their adaptor proteins are segregated into future GMCs and control the GMC development Two cell- fate determinants, Prospero (Pros) and Numb, have been characterized in the NB Pros is a homeodomain-containing transcription . to the anterior cortex of the one -cell zygote after the SPCC-induced polarization of the AP axis. The RING-finger protein PAR-2 and the serine/threonine kinase PAR-1 become restricted to the. pole. In the absence of centrosomes, the Figure 1. Cell polarity in the C. elegans zygote. The cell cortex of the zygote is divided into distinct anterior (red) and posterior (green) domains. The. during asymmetric cell divisions. I will focus my introduction on the asymmetric cell divisions that occur during the early divisions of Caenorhabditis elegans embryos and the development of

Ngày đăng: 15/09/2015, 17:11

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan