Synthesis of monodisperse noble metal nanoparticles

200 409 0
Synthesis of monodisperse noble metal nanoparticles

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

SYNTHESIS OF MONODISPERSE NOBLE METAL NANOPARTICLES ZHANG QINGBO NATIONAL UNIVERSITY OF SINGAPORE 2008 SYNTHESIS OF MONODISPERSE NOBLE METAL NANOPARTICLES ZHANG QINGBO (M. Eng., Tianjin University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL & BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2008 ACKNOWLEDGEMENTS I would like to express my greatest appreciation to my supervisor, Prof. Lee Jim Yang for his support and guidance throughout the course of this project. He has imparted in me the skill of creative problem solving, the scientific rigor in critiquing experimental results from a myriad of angles, objectivity and optimism that transform apparent problems into new discoveries and opportunities. These skill sets have enabled me to establish the overall direction of the research and to identify the niche areas for more in-depth investigations. I had the great luck to work with a group of wonderful and delightful colleagues in the laboratory, in particular, Dr. Xie Jianping, Dr. Yang Jun, Dr. Yang Jian, Dr. Pong Boon Kin, Dr. Tan Yen Nee, Dr. Zeng Jianhuang, Mr. Yang Jinhua, Mr. Deng Da and Ms. Yu Yue. I thank them for their valuable suggestions and stimulating discussions. I also thank Dr. Zhang Jixuan in Department of Materials Science and Engineering and Dr. Chris Boothroyd in Institute of Materials Research Engineering for their helpful suggestions on TEM measurement. I am indebted to the technical staff in the department, especially Mr. Boey Kok Hong, Ms Lee Chai Keng, Mr. Chia Phai Ann, Mr. Shang Zhenhua, Mr. Mao Ning and Dr. Yuan Zeliang. Their superb technical support and services are essential for the completion of this study. I I acknowledge the generosity of the National University of Singapore for providing the research scholarship throughout my Ph.D candidature. Finally, I would like to show my deepest gratitude to my family. Without their encouragement and understanding, this work could not have been completed successfully. II TABLE OF CONTENTS ACKNOWLEDGEMENTS . I TABLE OF CONTENTS III SUMMARY .VII LIST OF TABLES IX LIST OF FIGURES . X LIST OF SCHEMES . XVII LIST OF ABBREVIATIONS XVIII CHAPTER INTRODUCTION 1.1 Background . 1.2 Top-down and bottom-up approaches 1.3 Problem definitions . 1.4 Objectives and scope . CHAPTER LITERATURE REVIEW . 2.1 Fundamentals of formation of monodisperse nanoparticles . 2.1.1 Nucleation 10 2.1.2 Growth . 13 2.1.3 Oswald ripening . 14 2.2 Syntheses of monometallic Ag and Au nanoparticles 15 2.3 Syntheses of Ag-Au bimetallic nanoparticles . 23 2.3.1 Alloy nanoparticles 23 2.3.2 Core-shell nanoparticles . 27 2.3.3 Hollow nanoparticles . 28 2.4 Size sorting of nanoparticles . 29 CHAPTER TUNING THE CRYSTALLINITY OF GOLD NANOPARTICLES 32 3.1 Introduction . 32 3.2 Experimental section . 33 3.2.1 Synthesis of Au nanoparticles 33 3.2.2 Materials characterizations 34 3.3 Results and discussion 35 3.3.1 Synthesis and characterization of Au nanoparticles 35 3.3.1.1 Single-crystalline nanoparticles 35 3.3.1.2 Decahedral MTPs 37 3.3.1.3 Icosahedral MTPs . 39 3.3.2 Influence of the synthesis conditions on the Au nanoparticle crystallinity . 39 III 3.3.3 Formation mechanism of Au nanoparticles with different crystallinity 44 3.4 Conclusion 46 CHAPTER MONODISPERSE ICOSAHEDRAL SILVER, GOLD AND PALLADIUM NANOPARTICLES: SIZE CONTROL STRAGETY AND SUPERLATTICE FORMATION . 48 4.1 Introduction . 48 4.2 Experimental section: 50 4.2.1 Preparation of polydisperse Ag icosahedral nanoparticles 50 4.2.2 Narrowing the size distribution of Ag icosahedral nanoparticles 51 4.2.3 Preparation of monodisperse Au and Pd icosahedral nanoparticles 51 4.2.4 Manipulating the size of the icosahedral nanoparticles . 52 4.2.5 Materials characterizations 52 4.3. Results and discussion . 53 4.3.1 Synthesis of icosahedral Ag nanoparticles 53 4.3.2 Narrowing the size distribution of icosahedral Ag nanoparticles 59 4.3.3 Synthesis of monodisperse Au and Pd icosahedral nanoparticles . 61 4.3.4 Size Manipulation of monodisperse icosahedral nanoparticles . 65 4.3.5 Self-assembly of monodisperse icosahedral nanoparticles 66 4.4 Conclusions . 69 CHAPTER SIZE AND COMPOSITION TUNABLE HYDROPHILIC SILVER-GOLD ALLOY NANOPARTICLES BY REPLACEMENT REACTIONS . 70 5.1 Introduction . 70 5.2 Experimental Section 72 5.2.1 Synthesis of Ag nanoparticles 72 5.2.2 Synthesis of Ag-Au alloy nanoparticles 73 5.2.3 Materials characterizations 73 5.3 Results and Discussion . 74 5.3.1 Synthesis and characterization of Ag nanoparticles 76 5.3.2 Synthesis and characterization of Ag-Au alloy nanoparticles . 76 5.3.3 Formation mechanism of the homogeneous Ag-Au alloy nanoparticles. 82 5.4 Conclusion 87 CHAPTER SYNTHESIS OF MONODISPERSE HYDROPHOBIC SILVER-GOLD ALLOY NANOPARTICLES WITH INDEPENDENTLY TUNABLE MORPHOLOGY, COMPOSITION, SIZE AND SURFACE CHEMISTRY AND THEIR 3-D SUPERLATTICES . 89 6.1 Introduction . 89 6.2 Experimental section . 90 6.2.1 Synthesis of single-crystalline TO Ag nanoparticles . 90 6.2.2 Synthesis of icosahedral Ag MTPs 90 6.2.3 Narrowing the size distribution of Ag nanoparticles . 91 6.2.4 Tuning the size of single-crystalline TO Ag nanoparticles . 91 6.2.5 Synthesis of Ag-Au alloy nanoparticles 92 6.3 Results and discussion 94 IV 6.3.1 Synthesis of monodisperse Ag nanoparticles with different sizes and morphologies . 95 6.3.1.1 Synthesis of polydisperse single-crystalline TO Ag nanoparticles and icosahedral Ag MTPs . 95 6.3.1.2 Narrowing the size distributions of Ag nanoparticles . 97 6.3.1.3 Enlargement of the size of single-crystalline TO Ag nanoparticles . 102 6.3.2 Synthesis of Ag-Au alloy nanoparticles with independently tunable morphology, composition, size and surface chemistry . 102 6.3.2.1 Synthesis of Ag-Au alloy nanoparticles with different morphologies . 103 6.3.2.2 Synthesis of single-crystalline TO Ag-Au alloy nanoparticles with the same size but different compositions 106 6.3.2.3 Synthesis of Ag-Au alloy nanoparticles with different sizes but the same composition 109 6.3.2.4 Synthesis of Ag-Au alloy nanoparticles with different surface chemistry . 111 6.3.3 Self-assembly of Ag-Au alloy nanoparticles to 3-D superlattices . 114 6.3.3.1 Superlattices of single-crystalline Ag-Au alloy nanoparticles 115 6.3.3.2 Superlattices of icosahedral Ag-Au alloy MTPs 118 6.4 Conclusion 119 CHAPTER SYNTHESIS OF Ag@AgAu METAL CORE-ALLOY SHELL BIMETALLIC NANOPARTICLES WITH TUNABLE SHELL COMPOSITIONS BY THE GALVANIC REPLACEMENT REACTION 121 7. 1. Introduction . 121 7.2. Experimental section 123 7.2.1 Synthesis of Ag nanoparticles 123 7.2.2 Phase transfer of Ag nanoparticles and HAuCl4 124 7.2.3 Replacement reaction . 124 7.2.4 Materials characterizations 125 7.3 Results and discussion 125 7.3.1 Synthesis and characterization of Ag nanoparticles 125 7.3.2 Synthesis and characterization of Ag@AgAu metal core-alloy shell nanoparticles . 126 7.3.3 Formation mechanism of the Ag@AuAu core-shell nanoparticles . 130 7.3.3.1 Microscopic study . 131 7.3.3.2 Spectroscopic study 137 7.4 Conclusion 140 CHAPTER SIZE SORTING OF ELECTROSTATICALLY STABILIZED SILVER NANOPARTICLES 142 8.1 Introduction . 142 8.2 Experimental section . 143 8.2.1 Materials and instrumentations 143 8.2.2 Preparation of polydisperse MBSA-protected Ag nanoparticles . 144 8.2.3 Size sorting of Ag nanoparticles 145 V 8.3 Results and discussion 147 8.3.1 Preparation of MBSA-protected Ag nanoparticles 147 8.3.2 Size sorting of Ag nanoparticles 147 8.3.3 Mechanism of nanoparticle size sorting 150 8.4 Conclusion 152 CHAPTER CONCLUSIONS AND RECOMMENDATIONS . 153 9.1 Conclusions . 153 9.2 Suggestions for future work 159 REFERENCES . 162 PUBLICATIONS 178 VI SUMMARY Preparation of monodisperse nanoparticles on a large quantity is important for identifying the properties of the nanoparticles without ambiguity and for beseeching reliable application performance. This thesis work therefore focuses on developing new preparation methods to produce monodisperse noble metal nanoparticles with controllable morphology, size, surface chemistry, composition and composition distribution within each particle. Several types of zero-dimensional Ag, Au and Pd monometallic nanoparticles and Ag-Au bimetallic nanoparticles as well as their 3-D superlattices were fabricated. A kinetic control strategy was adopted to vary the crystallinity of monometallic Au nanoparticles formed by polyol synthesis. Single-crystalline nanoparticles, decahedral multiply twinned particles (MTPs) as icosahedral MTPs were all obtainable by simply adjusting the HAuCl4 concentration while keeping other environmental factors fixed. This kinetic control strategy was then combined with digestive ripening to produce highly monodisperse Ag icosahedral MTPs. These Ag icosahedral MTPs were useful as seeds in replacement reactions with Au and Pd precursors to form monodisperse Au and Pd icosahedral MTPs. The size of Ag, Au and Pd icosahedral MTPs could be varied without changes in their morphology and size distribution by fine tuning the conditions of seedmediated growth. The as-synthesized Ag, Au and Pd icosahedral MTPs could easily selfassemble into 3-D superlattices with long-range order because of their similarity in size and shape. VII Ag-Au bimetallic nanopartaicles with homogeneous alloy structure and heterogeneous Ag@AgAu metal core-alloy shell structure were synthesized by the replacement reaction between Ag nanoparticles and HAuCl4. The structure of the final product from the replacement reaction depended on the functional attributes of the starting Ag nanoparticles as well as the reaction conditions. The synthesis of Ag-Au alloy nanoparticles was then improved by a stepwise procedure consisting of reduction of Ag ions, digestive ripening, seed-mediated growth and replacement reaction to produce highly monodisperse alloy nanoparticles with independently tunable morphology, composition, size and surface chemistry. Both truncated octahedral single-crystalline and icosahedral multiply twinned Ag-Au alloy nanoparticles were obtained by this procedure. Both of them could self-assemble into 3-D superlattices. The packing pattern of the nanoparticles comprising the superlattices was dependent on the morphology of the nanoparticles. A simple methodology based on double-layer compression was also used to sort electrostatically-stabilized nanoparticles by size, using Ag nanoparticles as an example. By progressively changing the ionic strength in the aqueous nanoparticle solution, Ag nanoparticles could be sorted into several fractions by size with small size variations in each “cut”. The recursive application of this procedure would allow an initially polydisperse sample to be transformed into a product with a narrow size distribution. VIII References Kinetics in Mechanical Alloying of Cu-18 At.% Al by Planetary Ball Milling, Scripta Materialia, 41, pp. 861-866. 1999. De Smet, Y., L. Deriemaeker and R. Finsy. A Simple Computer Simulation of Ostwald Ripening, Langmuir, 13, pp. 6884-6888. 1997. Devarajan, S., B. Vimalan and S. Sampath. Phase Transfer of Au-Ag Alloy Nanoparticles from Aqueous Medium to an Organic Solvent: Effect of Aging of Surfactant on the Formation of Ag-Rich Alloy Compositions, Journal of Colloid and Interface Science, 278, pp. 126-132. 2004. Dick, K., T. Dhanasekaran, Z. Y. Zhang and D. Meisel. Size-Dependent Melting of SilicaEncapsulated Gold Nanoparticles, Journal of the American Chemical Society, 124, pp. 2312-2317. 2002. Ding, Y. and J. Erlebacher. Nanoporous Metals with Controlled Multimodal Pore Size Distribution, Journal of the American Chemical Society, 125, pp. 7772-7773. 2003. Elechiguerra, J. L., J. Reyes-Gasga and M. J. Yacaman. The Role of Twinning in Shape Evolution of Anisotropic Noble Metal Nanostructures, Journal of Materials Chemistry, 16, pp. 3906-3919. 2006. Endo, T., T. Yoshimura and K. Esumi. Synthesis and Catalytic Activity of Gold-Silver Binary Nanoparticles Stabilized by Pamam Dendrimer, Journal of Colloid and Interface Science, 286, pp. 602-609. 2005. Esumi, K., T. Matsumoto, Y. Seto and T. Yoshimura. Preparation of Gold-, Gold/SilverDendrimer Nanocomposites in the Presence of Benzoin in Ethanol by UV Irradiation, Journal of Colloid and Interface Science, 284, pp. 199-203. 2005. Eustis, S. and M. A. El-Sayed. Why Gold Nanoparticles Are More Precious Than Pretty Gold: Noble Metal Surface Plasmon Resonance and Its Enhancement of the Radiative and Nonradiative Properties of Nanocrystals of Different Shapes, Chemical Society Reviews, 35, pp. 209-217. 2006. Fischer, C. H., H. Weller, L. Katsikas and A. Henglein. Photochemistry of Colloidal Semiconductors .30. HPLC Investigation of Small CdS Particles, Langmuir, 5, pp. 429432. 1989. Frens. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions, Nature: Physical Sciences, 241, pp. 20-22. 1973. Garzon, I. L., K. Michaelian, M. R. Beltran, A. Posada-Amarillas, P. Ordejon, E. Artacho, D. Sanchez-Portal and J. M. Soler. Lowest Energy Structures of Gold Nanoclusters, Physical Review Letters, 81, pp. 1600-1603. 1998. Germain, V., A. Brioude, D. Ingert and M. P. Pileni. Silver Nanodisks: Size Selection Via Centrifugation and Optical Properties, Journal of Chemical Physics, 122, pp. 2005. 164 References Grzelczak, M., J. Perez-Juste, F. J. G. de Abajo and L. M. Liz-Marzan. Optical Properties of Platinum-Coated Gold Nanorods, Journal of Physical Chemistry C, 111, pp. 61836188. 2007. Gutierrez, E., R. D. Powell, F. R. Furuya, J. F. Hainfeld, T. G. Schaaff, M. N. Shafigullin, P. W. Stephens and R. L. Whetten. Greengold, a Giant Cluster Compound of Unusual Electronic Structure, European Physical Journal D, 9, pp. 647-651. 1999. Hambrock, J., R. Becker, A. Birkner, J. Weiss and R. A. Fischer. A Non-Aqueous Organometallic Route to Highly Monodispersed Copper Nanoparticles Using [Cu(Och(Me)Ch2nme2)(2)], Chemical Communications, pp. 68-69. 2002. Han, S. W., Y. Kim and K. Kim. Dodecanethiol-Derivatized Au/Ag Bimetallic Nanoparticles: Tem, Uv/Vis, Xps, and Ftir Analysis, Journal of Colloid and Interface Science, 208, pp. 272-278. 1998. Hao, E., R. C. Bailey, G. C. Schatz, J. T. Hupp and S. Y. Li. Synthesis and Optical Properties Of "Branched" Gold Nanocrystals, Nano Letters, 4, pp. 327-330. 2004. Hao, E., S. Y. Li, R. C. Bailey, S. L. Zou, G. C. Schatz and J. T. Hupp. Optical Properties of Metal Nanoshells, Journal of Physical Chemistry B, 108, pp. 1224-1229. 2004. Harfenist, S. A., Z. L. Wang, R. L. Whetten, I. Vezmar and M. M. Alvarez. ThreeDimensional Hexagonal Close-Packed Superlattice of Passivated Ag Nanocrystals, Advanced Materials, 9, pp. 817-822. 1997. Haruta, M. and B. Delmon. Preparation of Homodisperse Solids, Journal De Chimie Physique Et De Physico-Chimie Biologique, 83, pp. 859-868. 1986. Hasan, M., D. Bethell and M. Brust. The Fate of Sulfur-Bound Hydrogen on Formation of Self-Assembled Thiol Monolayers on Gold: H-1 Nmr Spectroscopic Evidence from Solutions of Gold Clusters, Journal of the American Chemical Society, 124, pp. 11321133. 2002. Heath, J. R., C. M. Knobler and D. V. Leff. Pressure/Temperature Phase Diagrams and Superlattices of Organically Functionalized Metal Nanocrystal Monolayers: The Influence of Particle Size, Size Distribution, and Surface Passivant, Journal of Physical Chemistry B, 101, pp. 189-197. 1997. Hodak, J. H., A. Henglein, M. Giersig and G. V. Hartland. Laser-Induced Inter-Diffusion in Auag Core-Shell Nanoparticles, Journal of Physical Chemistry B, 104, pp. 1170811718. 2000. Hofmeister, H. Forty Years Study of Fivefold Twinned Structures in Small Particles and Thin Films, Crystal Research and Technology, 33, pp. 3-25. 1998. Horswell, S. L., I. A. O'Neil and D. J. Schiffrin. Potential Modulated Infrared Reflectance Spectroscopy of Pt-Diisocyanide Nanostructured Electrodes, Journal of Physical 165 References Chemistry B, 105, pp. 941-947. 2001. Hostetler, M. J., S. J. Green, J. J. Stokes and R. W. Murray. Monolayers in Three Dimensions: Synthesis and Electrochemistry of Omega-Functionalized AlkanethiolateStabilized Gold Cluster Compounds, Journal of the American Chemical Society, 118, pp. 4212-4213. 1996. Hostetler, M. J., J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans and R. W. Murray. Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 Nm: Core and Monolayer Properties as a Function of Core Size, Langmuir, 14, pp. 17-30. 1998. Hostetler, M. J., C. J. Zhong, B. K. H. Yen, J. Anderegg, S. M. Gross, N. D. Evans, M. Porter and R. W. Murray. Stable, Monolayer-Protected Metal Alloy Clusters, Journal of the American Chemical Society, 120, pp. 9396-9397. 1998. Howard, R. The Growth of Uniform Colloidal Dispersions, The Journal of Chemical Physics, 19, pp. 482-487. 1951. Huang, Y. F., K. M. Huang and H. T. Chang. Synthesis and Characterization of Au CoreAu-Ag Shell Nanoparticles from Gold Seeds: Impacts of Glycine Concentration and Ph, Journal of Colloid and Interface Science, 301, pp. 145-154. 2006. Hunyadi, S. E. and C. J. Murphy. Bimetallic Silver-Gold Nanowires: Fabrication and Use in Surface-Enhanced Raman Scattering, Journal of Materials Chemistry, 16, pp. 39293935. 2006. Hutter, E. and J. H. Fendler. Exploitation of Localized Surface Plasmon Resonance, Advanced Materials, 16, pp. 1685-1706. 2004. Im, S. H., Y. T. Lee, B. Wiley and Y. N. Xia. Large-Scale Synthesis of Silver Nanocubes: The Role of Hcl in Promoting Cube Perfection and Monodispersity, Angewandte Chemie-International Edition, 44, pp. 2154-2157. 2005. Izgaliev, A. T., A. V. Simakin and G. A. Shafeev. Formation of the Alloy of Au and Ag Nanoparticles Upon Laser Irradiation of the Mixture of Their Colloidal Solutions, Quantum Electronics, 34, pp. 47-50. 2004. Izgaliev, A. T., A. V. Simakin, G. A. Shafeev and F. Bozon-Verduraz. Intermediate Phase Upon Alloying Au-Ag Nanoparticles under Laser Exposure of the Mixture of Individual Colloids, Chemical Physics Letters, 390, pp. 467-471. 2004. Jana, N. R. and X. G. Peng. Single-Phase and Gram-Scale Routes toward Nearly Monodisperse Au and Other Noble Metal Nanocrystals, Journal of the American Chemical Society, 125, pp. 14280-14281. 2003. Jin, R. C., Y. C. Cao, E. C. Hao, G. S. Metraux, G. C. Schatz and C. A. Mirkin. 166 References Controlling Anisotropic Nanoparticle Growth through Plasmon Excitation, Nature, 425, pp. 487-490. 2003. Johnson, S. R., S. D. Evans and R. Brydson. Influence of a Terminal Functionality on the Physical Properties of Surfactant-Stabilized Gold Nanoparticles, Langmuir, 14, pp. 66396647. 1998. Kariuki, N. N., J. Luo, M. M. Maye, S. A. Hassan, T. Menard, H. R. Naslund, Y. H. Lin, C. M. Wang, M. H. Engelhard and C. J. Zhong. Composition-Controlled Synthesis of Bimetallic Gold-Silver Nanoparticles, Langmuir, 20, pp. 11240-11246. 2004. Kim, F., S. Connor, H. Song, T. Kuykendall and P. D. Yang. Platonic Gold Nanocrystals, Angewandte Chemie-International Edition, 43, pp. 3673-3677. 2004. Kim, K., K. L. Kim and S. J. Lee. Surface Enrichment of Ag Atoms in Au/Ag Alloy Nanoparticles Revealed by Surface Enhanced Raman Scattering Spectroscopy, Chemical Physics Letters, 403, pp. 77-82. 2005. Kim, M. H., X. M. Lu, B. Wiley, E. P. Lee and Y. N. Xia. Morphological Evolution of Single-Crystal Ag Nanospheres During the Galvanic Replacement Reaction with Haucl4, Journal of Physical Chemistry C, 112, pp. 7872-7876. 2008. Kim, M. J., H. J. Na, K. C. Lee, E. A. Yoo and M. Y. Lee. Preparation and Characterization of Au-Ag and Au-Cu Alloy Nanoparticles in Chloroform, Journal of Materials Chemistry, 13, pp. 1789-1792. 2003. Kim, Y. G., S. K. Oh and R. M. Crooks. Preparation and Characterization of 1-2 Nm Dendrimer-Encapsulated Gold Nanoparticles Having Very Narrow Size Distributions, Chemistry of Materials, 16, pp. 167-172. 2004. Korgel, B. A., S. Fullam, S. Connolly and D. Fitzmaurice. Assembly and SelfOrganization of Silver Nanocrystal Superlattices: Ordered "Soft Spheres", Journal of Physical Chemistry B, 102, pp. 8379-8388. 1998. Korgel, B. A., S. Fullam, S. Connolly and D. Fitzmaurice. Assembly and SelfOrganization of Silver Nanocrystal Superlattices: Ordered "Soft Spheres", Journal of Physical Chemistry B, 102, pp. 8379-8388. 1998. Kraus, T., L. Malaquin, H. Schmid, W. Riess, N. D. Spencer and H. Wolf. Nanoparticle Printing with Single-Particle Resolution, Nature Nanotechnology, 2, pp. 570-576. 2007. Kwon, K., K. Y. Lee, Y. W. Lee, M. Kim, J. Heo, S. J. Ahn and S. W. Han. Controlled Synthesis of Icosahedral Gold Nanoparticles and Their Surface-Enhanced Raman Scattering Property, Journal of Physical Chemistry C, 111, pp. 1161-1165. 2007. LaMer, V. K. and R. H. Dinegar. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols, J. Am. Chem. Soc., 72, pp. 4847-4854. 1950. 167 References Lee, H., S. E. Habas, S. Kweskin, D. Butcher, G. A. Somorjai and P. D. Yang. Morphological Control of Catalytically Active Platinum Nanocrystals, Angewandte Chemie-International Edition, 45, pp. 7824-7828. 2006. Lee, I., S. W. Han and K. Kim. Production of Au-Ag Alloy Nanoparticles by Laser Ablation of Bulk Alloys, Chemical Communications, pp. 1782-1783. 2001. Lee, Y. T., S. H. Im, B. Wiley and Y. N. Xia. Quick Formation of Single-Crystal Nanocubes of Silver through Dual Functions of Hydrogen Gas in Polyol Synthesis, Chemical Physics Letters, 411, pp. 479-483. 2005. Liang, H. P., L. J. Wan, C. L. Bai and L. Jiang. Gold Hollow Nanospheres: Tunable Surface Plasmon Resonance Controlled by Interior-Cavity Sizes, Journal of Physical Chemistry B, 109, pp. 7795-7800. 2005. Lim, B., Y. J. Xiong and Y. N. Xia. A Water-Based Synthesis of Octahedral, Decahedral, and Icosahedral Pd Nanocrystals, Angewandte Chemie-International Edition, 46, pp. 9279-9282. 2007. Lin, X. M., C. M. Sorensen and K. J. Klabunde. Digestive Ripening, Nanophase Segregation and Superlattice Formation N Gold Nanocrystal Colloids, Journal of Nanoparticle Reserach, 2, pp. 157-164. 2000. Lin, X. Z., X. W. Teng and H. Yang. Direct Synthesis of Narrowly Dispersed Silver Nanoparticles Using a Single-Source Precursor, Langmuir, 19, pp. 10081-10085. 2003. Link, S., Z. L. Wang and M. A. El-Sayed. Alloy Formation of Gold-Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition, Journal of Physical Chemistry B, 103, pp. 3529-3533. 1999. Lisiecki, I., D. Parker, C. Salzemann and M. P. Pileni. Face-Centered Cubic SupraCrystals and Disordered Three-Dimensional Assemblies of 7.5 Nm Cobalt Nanocrystals: Influence of the Mesoscopic Ordering on the Magnetic Properties, Chemistry of Materials, 19, pp. 4030-4036. 2007. Liu, J. H., A. Q. Wang, Y. S. Chi, H. P. Lin and C. Y. Mou. Synergistic Effect in an Au-Ag Alloy Nanocatalyst: Co Oxidation, Journal of Physical Chemistry B, 109, pp. 40-43. 2005. Liu, J. H., A. Q. Wang, Y. S. Chi, H. P. Lin and C. Y. Mou. Synergistic Effect in an Au-Ag Alloy Nanocatalyst: Co Oxidation, Journal of Physical Chemistry B, 109, pp. 40-43. 2005. Liu, M. Z. and P. Guyot-Sionnest. Mechanism of Silver(I)-Assisted Growth of Gold Nanorods and Bipyramids, Journal of Physical Chemistry B, 109, pp. 22192-22200. 2005. Lu, L. H., H. S. Wang, Y. H. Zhou, S. Q. Xi, H. J. Zhang, H. B. W. Jiawen and B. Zhao. Seed-Mediated Growth of Large, Monodisperse Core-Shell Gold-Silver Nanoparticles 168 References with Ag-Like Optical Properties, Chemical Communications, pp. 144-145. 2002. Lu, X. M., H. Y. Tuan, J. Y. Chen, Z. Y. Li, B. A. Korgel and Y. N. Xia. Mechanistic Studies on the Galvanic Replacement Reaction between Multiply Twinned Particles of Ag and Haucl4 in an Organic Medium, Journal of the American Chemical Society, 129, pp. 1733-1742. 2007. Mallik, K., M. Mandal, N. Pradhan and T. Pal. Seed Mediated Formation of Bimetallic Nanoparticles by Uv Irradiation: A Photochemical Approach for the Preparation Of "Core-Shell" Type Structures, Nano Letters, 1, pp. 319-322. 2001. Mallin, M. P. and C. J. Murphy. Solution-Phase Synthesis of Sub-10 Nm Au-Ag Alloy Nanoparticles, Nano Letters, 2, pp. 1235-1237. 2002. Mandal, S., P. R. Selvakannan, R. Pasricha and M. Sastry. Keggin Ions as Uv-Switchable Reducing Agents in the Synthesis of Au Core-Ag Shell Nanoparticles, Journal of the American Chemical Society, 125, pp. 8440-8441. 2003. McLeod, M. C., M. Anand, C. L. Kitchens and C. B. Roberts. Precise and Rapid Size Selection and Targeted Deposition of Nanoparticle Populations Using Co2 Gas Expanded Liquids, Nano Letters, 5, pp. 461-465. 2005. Mulvaney, P., M. Giersig and A. Henglein. Electrochemistry of Multilayer Colloids Preparation and Absorption-Spectrum of Gold-Coated Silver Particles, Journal of Physical Chemistry, 97, pp. 7061-7064. 1993. Mulvaney, P. Surface Plasmon Spectroscopy of Nanosized Metal Particles, Langmuir, 12, pp. 788-800. 1996. Murray, C. B., C. R. Kagan and M. G. Bawendi. Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies, Annual Review of Materials Science, 30, pp. 545-610. 2000. Murray, C. B., D. J. Norris and M. G. Bawendi. Synthesis and Characterization of Nearly Monodisperse Cde (E = S, Se, Te) Semiconductor Nanocrystallites, Journal of the American Chemical Society, 115, pp. 8706-8715. 1993. Papavassiliou, G. C. Surface Plasmons in Small Au-Ag Alloy Particles, Journal of Physics F: Metal Physics., 6, pp. L103-L105. 1976. Park, J., K. J. An, Y. S. Hwang, J. G. Park, H. J. Noh, J. Y. Kim, J. H. Park, N. M. Hwang and T. Hyeon. Ultra-Large-Scale Syntheses of Monodisperse Nanocrystals, Nature Materials, 3, pp. 891-895. 2004. Park, J., J. Joo, S. G. Kwon, Y. Jang and T. Hyeon. Synthesis of Monodisperse Spherical Nanocrystals, Angewandte Chemie-International Edition, 46, pp. 4630-4660. 2007. Peng, X. G., J. Wickham and A. P. Alivisatos. Kinetics of Ii-Vi and Iii-V Colloidal 169 References Semiconductor Nanocrystal Growth: "Focusing" Of Size Distributions, Journal of the American Chemical Society, 120, pp. 5343-5344. 1998. Peng, Z. A. and X. G. Peng. Nearly Monodisperse and Shape-Controlled Cdse Nanocrystals Via Alternative Routes: Nucleation and Growth, Journal of the American Chemical Society, 124, pp. 3343-3353. 2002. Petit, C., P. Lixon and M. P. Pileni. In-Situ Synthesis of Silver Nanocluster in Aot Reverse Micelles, Journal of Physical Chemistry, 97, pp. 12974-12983. 1993. Pileni, M. P. The Role of Soft Colloidal Templates in Controlling the Size and Shape of Inorganic Nanocrystals, Nature Materials, 2, pp. 145-150. 2003. Pileni, M. P. Self-Organization of Inorganic Nanocrystals, Journal of Physics-Condensed Matter, 18, pp. S67-S84. 2006. Porter, L. A., D. Ji, S. L. Westcott, M. Graupe, R. S. Czernuszewicz, N. J. Halas and T. R. Lee. Gold and Silver Nanoparticles Functionalized by the Adsorption of Dialkyl Disulfides, Langmuir, 14, pp. 7378-7386. 1998. Prasad, B. L. V., S. I. Stoeva, C. M. Sorensen and K. J. Klabunde. Digestive Ripening of Thiolated Gold Nanoparticles: The Effect of Alkyl Chain Length, Langmuir, 18, pp. 7515-7520. 2002. Prasad, B. L. V., S. I. Stoeva, C. M. Sorensen and K. J. Klabunde. Digestive-Ripening Agents for Gold Nanoparticles: Alternatives to Thiols, Chemistry of Materials, 15, pp. 935-942. 2003. Prodan, E., C. Radloff, N. J. Halas and P. Nordlander. A Hybridization Model for the Plasmon Response of Complex Nanostructures, Science, 302, pp. 419-422. 2003. Reyes-Gasga, J., S. Tehuacanero-Nunez, J. M. Montejano-Carrizales, X. X. Gao and M. Jose-Yacaman. Analysis of the Contrast in Icosahedral Gold Nanoparticles, Topics in Catalysis, 46, pp. 23-30. 2007. Rodriguez-Gonzalez, B., A. Burrows, M. Watanabe, C. J. Kiely and L. M. L. Marzan. Multishell Bimetallic Auag Nanoparticles: Synthesis, Structure and Optical Properties, Journal of Materials Chemistry, 15, pp. 1755-1759. 2005. Rodriguez-Gonzalez, B., A. Sanchez-Iglesias, M. Giersig and L. M. Liz-Marzan. Auag Bimetallic Nanoparticles: Formation, Silica-Coating and Selective Etching, Faraday Discussions, 125, pp. 133-144. 2004. Roucoux, A., J. Schulz and H. Patin. Reduced Transition Metal Colloids: A Novel Family of Reusable Catalysts?, Chemical Reviews, 102, pp. 3757-3778. 2002. Rowe, M. P., K. E. Plass, K. Kim, C. Kurdak, E. T. Zellers and A. J. Matzger. SinglePhase Synthesis of Functionalized Gold Nanoparticles, Chemistry of Materials, 16, pp. 170 References 3513-3517. 2004. Sanchez-Iglesias, A., I. Pastoriza-Santos, J. Perez-Juste, B. Rodriguez-Gonzalez, F. J. G. de Abajo and L. M. Liz-Marzan. Synthesis and Optical Properties of Gold Nanodecahedra with Size Control, Advanced Materials, 18, pp. 2529-+. 2006. Sanedrin, R. G., D. G. Georganopoulou, S. Park and C. A. Mirkin. Seed-Mediated Growth of Bimetallic Prisms, Advanced Materials, 17, pp. 1027-1031. 2005. Schmid, G. and L. F. Chi. Metal Clusters and Colloids, Advanced Materials, 10, pp. 515526. 1998. Scott, R. W. J., C. Sivadinarayana, O. M. Wilson, Z. Yan, D. W. Goodman and R. M. Crooks. Titania-Supported Pdau Bimetallic Catalysts Prepared from DendrimerEncapsulated Nanoparticle Precursors, Journal of the American Chemical Society, 127, pp. 1380-1381. 2005. Selvakannan, P. R. and M. Sastry. Hollow Gold and Platinum Nanoparticles by a Transmetallation Reaction in an Organic Solution, Chemical Communications, pp. 16841686. 2005. Selvakannan, P. R., A. Swami, D. Srisathiyanarayanan, P. S. Shirude, R. Pasricha, A. B. Mandale and M. Sastry. Synthesis of Aqueous Au Core-Ag Shell Nanoparticles Using Tyrosine as a Ph-Dependent Reducing Agent and Assembling Phase-Transferred Silver Nanoparticles at the Air-Water Interface, Langmuir, 20, pp. 7825-7836. 2004. Senapati, S., A. Ahmad, M. I. Khan, M. Sastry and R. Kumar. Extracellular Biosynthesis of Bimetallic Au-Ag Alloy Nanoparticles, Small, 1, pp. 517-520. 2005. Seo, W. S., H. H. Jo, K. Lee and J. T. Park. Preparation and Optical Properties of Highly Crystalline, Colloidal, and Size-Controlled Indium Oxide Nanoparticles, Advanced Materials, 15, pp. 795-+. 2003. Shi, H. Z., L. D. Zhang and W. P. Cai. Composition Modulation of Optical Absorption in Agxau1-X Alloy Nanocrystals in Situ Formed within Pores of Mesoporous Silica, Journal of Applied Physics, 87, pp. 1572-1574. 2000. Shibata, T., B. A. Bunker, Z. Y. Zhang, D. Meisel, C. F. Vardeman and J. D. Gezelter. Size-Dependent Spontaneous Alloying of Au-Ag Nanoparticles, Journal of the American Chemical Society, 124, pp. 11989-11996. 2002. Siebrands, T., M. Giersig, P. Mulvaney and C. H. Fischer. Steric Exclusion Chromatography of Nanometer-Sized Gold Particles, Langmuir, 9, pp. 2297-2300. 1993. Siekkinen, A. R., J. M. McLellan, J. Y. Chen and Y. N. Xia. Rapid Synthesis of Small Silver Nanocubes by Mediating Polyol Reduction with a Trace Amount of Sodium Sulfide or Sodium Hydrosulfide, Chemical Physics Letters, 432, pp. 491-496. 2006. Silvert, P. Y., R. HerreraUrbina, N. Duvauchelle, V. Vijayakrishnan and K. T. Elhsissen. 171 References Preparation of Colloidal Silver Dispersions by the Polyol Process .1. Synthesis and Characterization, Journal of Materials Chemistry, 6, pp. 573-577. 1996. Silvert, P. Y., R. HerreraUrbina and K. TekaiaElhsissen. Preparation of Colloidal Silver Dispersions by the Polyol Process .2. Mechanism of Particle Formation, Journal of Materials Chemistry, 7, pp. 293-299. 1997. Smetana, A. B., K. J. Klabunde and C. M. Sorensen. Synthesis of Spherical Silver Nanoparticles by Digestive Ripening, Stabilization with Various Agents, and Their 3-D and 2-D Superlattice Formation, Journal of Colloid and Interface Science, 284, pp. 521526. 2005. Smetana, A. B., K. J. Klabunde, C. M. Sorensen, A. A. Ponce and B. Mwale. LowTemperature Metallic Alloying of Copper and Silver Nanoparticles with Gold Nanoparticles through Digestive Ripening, Journal of Physical Chemistry B, 110, pp. 2155-2158. 2006. Srnova-Sloufova, I., F. Lednicky, A. Gemperle and J. Gemperlova. Core-Shell (Ag)Au Bimetallic Nanoparticles: Analysis of Transmission Electron Microscopy Images, Langmuir, 16, pp. 9928-9935. 2000. Stamenkovic, V. R., B. Fowler, B. S. Mun, G. F. Wang, P. N. Ross, C. A. Lucas and N. M. Markovic. Improved Oxygen Reduction Activity on Pt3ni(111) Via Increased Surface Site Availability, Science, 315, pp. 493-497. 2007. Stoeva, S., K. J. Klabunde, C. M. Sorensen and I. Dragieva. Gram-Scale Synthesis of Monodisperse Gold Colloids by the Solvated Metal Atom Dispersion Method and Digestive Ripening and Their Organization into Two- and Three-Dimensional Structures, Journal of the American Chemical Society, 124, pp. 2305-2311. 2002. Stoeva, S. I., B. L. V. Prasad, S. Uma, P. K. Stoimenov, V. Zaikovski, C. M. Sorensen and K. J. Klabunde. Face-Centered Cubic and Hexagonal Closed-Packed Nanocrystal Superlattices of Gold Nanoparticles Prepared by Different Methods, Journal of Physical Chemistry B, 107, pp. 7441-7448. 2003. Stoeva, S. I., A. B. Smetana, C. M. Sorensen and K. J. Klabunde. Gram-Scale Synthesis of Aqueous Gold Colloids Stabilized by Various Ligands, Journal of Colloid and Interface Science, 309, pp. 94-98. 2007. Sugimoto, T. Effects of Convection and Brownian Motion on Particle Growth Rate in Colloidal Dispersions, AICHE Journal, 24, pp. 1125-1127. 1978. Sugimoto, T. Preparation of Monodispersed Colloidal Particles, Advances in Colloid and Interface Science, 28, pp. 65-108. 1987. Sun, S. H., C. B. Murray, D. Weller, L. Folks and A. Moser. Monodisperse Fept Nanoparticles and Ferromagnetic Fept Nanocrystal Superlattices, Science, 287, pp. 19891992. 2000. 172 References Sun, Y. G., B. Mayers and Y. N. Xia. Metal Nanostructures with Hollow Interiors, Advanced Materials, 15, pp. 641-646. 2003. Sun, Y. G., B. T. Mayers and Y. N. Xia. Template-Engaged Replacement Reaction: A OneStep Approach to the Large-Scale Synthesis of Metal Nanostructures with Hollow Interiors, Nano Letters, 2, pp. 481-485. 2002. Sun, Y. G. and Y. A. Xia. Alloying and Dealloying Processes Involved in the Preparation of Metal Nanoshells through a Galvanic Replacement Reaction, Nano Letters, 3, pp. 1569-1572. 2003. Sun, Y. G. and Y. N. Xia. Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science, 298, pp. 2176-2179. 2002. Sun, Y. G. and Y. N. Xia. Mechanistic Study on the Replacement Reaction between Silver Nanostructures and Chloroauric Acid in Aqueous Medium, Journal of the American Chemical Society, 126, pp. 3892-3901. 2004. Talapin, D. V., A. L. Rogach, M. Haase and H. Weller. Evolution of an Ensemble of Nanoparticles in a Colloidal Solution: Theoretical Study, Journal of Physical Chemistry B, 105, pp. 12278-12285. 2001. Talapin, D. V., A. L. Rogach, A. Kornowski, M. Haase and H. Weller. Highly Luminescent Monodisperse Cdse and Cdse/Zns Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture, Nano Letters, 1, pp. 207-211. 2001. Talapin, D. V., A. L. Rogach, E. V. Shevchenko, A. Kornowski, M. Haase and H. Weller. Dynamic Distribution of Growth Rates within the Ensembles of Colloidal Ii-Vi and Iii-V Semiconductor Nanocrystals as a Factor Governing Their Photoluminescence Efficiency, Journal of the American Chemical Society, 124, pp. 5782-5790. 2002. Taleb, A., C. Petit and M. P. Pileni. Synthesis of Highly Monodisperse Silver Nanoparticles from Aot Reverse Micelles: A Way to 2d and 3d Self-Organization, Chemistry of Materials, 9, pp. 950-959. 1997. Tang, Y. and O. Y. Min. Tailoring Properties and Functionalities of Metal Nanoparticles through Crystallinity Engineering, Nature Materials, 6, pp. 754-759. 2007. Tao, A., P. Sinsermsuksakul and P. D. Yang. Polyhedral Silver Nanocrystals with Distinct Scattering Signatures, Angewandte Chemie-International Edition, 45, pp. 4597-4601. 2006. Templeton, A. C., S. W. Chen, S. M. Gross and R. W. Murray. Water-Soluble, Isolable Gold Clusters Protected by Tiopronin and Coenzyme a Monolayers, Langmuir, 15, pp. 66-76. 1999. Templeton, A. C., M. P. Wuelfing and R. W. Murray. Monolayer Protected Cluster 173 References Molecules, Accounts of Chemical Research, 33, pp. 27-36. 2000. Terrill, R. H., T. A. Postlethwaite, C. H. Chen, C. D. Poon, A. Terzis, A. D. Chen, J. E. Hutchison, M. R. Clark, G. Wignall, J. D. Londono, R. Superfine, M. Falvo, C. S. Johnson, E. T. Samulski and R. W. Murray. Monolayers in Three Dimensions: Nmr, Saxs, Thermal, and Electron Hopping Studies of Alkanethiol Stabilized Gold Clusters, Journal of the American Chemical Society, 117, pp. 12537-12548. 1995. Toshima, N. and T. Yonezawa. Bimetallic Nanoparticles - Novel Materials for Chemical and Physical Applications, New Journal of Chemistry, 22, pp. 1179-1201. 1998. Tsuji, M., N. Miyamae, S. Lim, K. Kimura, X. Zhang, S. Hikino and M. Nishio. Crystal Structures and Growth Mechanisms of Au@Ag Core-Shell Nanoparticles Prepared by the Microwave-Polyol Method, Crystal Growth & Design, 6, pp. 1801-1807. 2006. Tsuji, M., N. Miyamae, K. Matsumoto, S. Hikino and T. Tsuji. Rapid Formation of Novel Au Core-Ag Shell Nanostructures by a Microwave-Polyol Method, Chemistry Letters, 34, pp. 1518-1519. 2005. Turkevich, J., P. C. Stevenson and J. Hillier. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold, Discussions of the Faraday Society 11, pp. 55-75. 1951. Wang, A. Q., J. H. Liu, S. D. Lin, T. S. Lin and C. Y. Mou. A Novel Efficient Au-Ag Alloy Catalyst System: Preparation, Activity, and Characterization, Journal of Catalysis, 233, pp. 186-197. 2005. Wang, Z. L. Structural Analysis of Self-Assembling Nanocrystal Superlattices, Advanced Materials, 10, pp. 13-+. 1998. Wang, Z. L. Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies, Journal of Physical Chemistry B, 104, pp. 1153-1175. 2000. Wang, Z. L., S. A. Harfenist, R. L. Whetten, J. Bentley and N. D. Evans. Bundling and Interdigitation of Adsorbed Thiolate Groups in Self-Assembled Nanocrystal Superlattices, Journal of Physical Chemistry B, 102, pp. 3068-3072. 1998. Whetten, R. L., J. T. Khoury, M. M. Alvarez, S. Murthy, I. Vezmar, Z. L. Wang, P. W. Stephens, C. L. Cleveland, W. D. Luedtke and U. Landman. Nanocrystal Gold Molecules, Advanced Materials, 8, pp. 428-&. 1996. Whetten, R. L., M. N. Shafigullin, J. T. Khoury, T. G. Schaaff, I. Vezmar, M. M. Alvarez and A. Wilkinson. Crystal Structures of Molecular Gold Nanocrystal Arrays, Accounts of Chemical Research, 32, pp. 397-406. 1999. Wilcoxon, J. P. and B. L. Abrams. Synthesis, Structure and Properties of Metal Nanoclusters, Chemical Society Reviews, 35, pp. 1162-1194. 2006. 174 References Wilcoxon, J. P., J. E. Martin, F. Parsapour, B. Wiedenman and D. F. Kelley. Photoluminescence from Nanosize Gold Clusters, Journal of Chemical Physics, 108, pp. 9137-9143. 1998. Wilcoxon, J. P., J. E. Martin and P. Provencio. Optical Properties of Gold and Silver Nanoclusters Investigated by Liquid Chromatography, Journal of Chemical Physics, 115, pp. 998-1008. 2001. Wilcoxon, J. P. and P. Provencio. Etching and Aging Effects in Nanosize Au Clusters Investigated Using High-Resolution Size-Exclusion Chromatography, Journal of Physical Chemistry B, 107, pp. 12949-12957. 2003. Wilcoxon, J. P., R. L. Williamson and R. Baughman. Optical-Properties of Gold Colloids Formed in Inverse Micelles, Journal of Chemical Physics, 98, pp. 9933-9950. 1993. Wiley, B., T. Herricks, Y. G. Sun and Y. N. Xia. Polyol Synthesis of Silver Nanoparticles: Use of Chloride and Oxygen to Promote the Formation of Single-Crystal, Truncated Cubes and Tetrahedrons, Nano Letters, 4, pp. 1733-1739. 2004. Wiley, B., Y. G. Sun, J. Y. Chen, H. Cang, Z. Y. Li, X. D. Li and Y. N. Xia. ShapeControlled Synthesis of Silver and Gold Nanostructures, Mrs Bulletin, 30, pp. 356-361. 2005. Wiley, B., Y. G. Sun, B. Mayers and Y. N. Xia. Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver, Chemistry-a European Journal, 11, pp. 454-463. 2005. Wiley, B., Y. G. Sun and Y. N. Xia. Polyol Synthesis of Silver Nanostructures: Control of Product Morphology with Fe(Ii) or Fe(Iii) Species, Langmuir, 21, pp. 8077-8080. 2005. Wilson, O. M., R. W. J. Scott, J. C. Garcia-Martinez and R. M. Crooks. Separation of Dendrimer-Encapsulated Au and Ag Nanoparticles by Selective Extraction, Chemistry of Materials, 16, pp. 4202-4204. 2004. Wilson, O. M., R. W. J. Scott, J. C. Garcia-Martinez and R. M. Crooks. Synthesis, Characterization, and Structure-Selective Extraction of 1-3-Nm Diameter Auag Dendrimer-Encapsulated Bimetallic Nanoparticles, Journal of the American Chemical Society, 127, pp. 1015-1024. 2005. Wilson, W. L., P. F. Szajowski and L. E. Brus. Quantum Confinement in Size-Selected, Surface-Oxidized Silicon Nanocrystals, Science, 262, pp. 1242-1244. 1993. Wonnell, S. K., J. M. Delaye, M. Bibole and Y. Limoge. Activation Volume for the Interdiffusion of Ag-Au Multilayers, Journal of Applied Physics, 72, pp. 5195-5205. 1992. Xiong, Y. J. and Y. N. Xia. Shape-Controlled Synthesis of Metal Nanostructures: The Case of Palladium, Advanced Materials, 19, pp. 3385-3391. 2007. 175 References Xu, J., S. Y. Li, J. Weng, X. F. Wang, Z. M. Zhou, K. Yang, M. Litt, X. Chen, Q. Cui, M. Y. Cao and Q. Q. Zhang. Hydrothermal Syntheses of Gold Nanocrystals: From Icosahedral to Its Truncated Form, Advanced Functional Materials, 18, pp. 277-284. 2008. Yacaman, M. J., J. A. Ascencio, H. B. Liu and J. Gardea-Torresdey. Structure Shape and Stability of Nanometric Sized Particles, Journal of Vacuum Science & Technology B-an International Journal Devoted to Microelectronics and Nanometer Structures-Processing Measurement and Phenomena, 19, pp. 1091-1103. 2001. Yang, J., J. Y. Lee, T. C. Deivaraj and H. P. Too. A Highly Efficient Phase Transfer Method for Preparing Alkylamine-Stabilized Ru, Pt, and Au Nanoparticles, Journal of Colloid and Interface Science, 277, pp. 95-99. 2004. Yang, J., J. Y. Lee, T. C. Deivaraj and H. P. Too. An Improved Brust's Procedure for Preparing Alkylamine Stabilized Pt, Ru Nanoparticles, Colloids and Surfaces aPhysicochemical and Engineering Aspects, 240, pp. 131-134. 2004. Yang, J., J. Y. Lee and H. P. Too. Core-Shell Ag-Au Nanoparticles from Replacement Reaction in Organic Medium, Journal of Physical Chemistry B, 109, pp. 19208-19212. 2005. Yang, J., J. Y. Lee, H. P. Too, G. M. Chow and L. M. Gan. Triton X-100-Assisted Assembly of 5-Nm Au Nanoparticles by DNA Hybridization, Chemistry Letters, 34, pp. 354-355. 2005. Yang, J., J. Y. Lee, H. P. Too and S. Valiyaveettil. A Bis(PSulfonatophenyl)Phenylphosphine-Based Synthesis of Hollow Pt Nanospheres, Journal of Physical Chemistry B, 110, pp. 125-129. 2006. Yang, Y., J. L. Shi, G. Kawamura and M. Nogami. Preparation of Au-Ag, Ag-Au CoreShell Bimetallic Nanoparticles for Surface-Enhanced Raman Scattering, Scripta Materialia, 58, pp. 862-865. 2008. Yasuda, H., H. Mori, M. Komatsu and K. Takeda. Spontaneous Alloying of Copper Atoms into Gold Clusters at Reduced Temperatures, Journal of Applied Physics, 73, pp. 1100-1103. 1993. Yin, Y. and A. P. Alivisatos. Colloidal Nanocrystal Synthesis and the Organic-Inorganic Interface, Nature, 437, pp. 664-670. 2005. Yin, Y. D., C. Erdonmez, S. Aloni and A. P. Alivisatos. Faceting of Nanocrystals During Chemical Transformation: From Solid Silver Spheres to Hollow Gold Octahedra, Journal of the American Chemical Society, 128, pp. 12671-12673. 2006. Zamborini, F. P., S. M. Gross and R. W. Murray. Synthesis, Characterization, Reactivity, and Electrochemistry of Palladium Monolayer Protected Clusters, Langmuir, 17, pp. 481488. 2001. 176 References Zanchet, D., B. D. Hall and D. Ugarte. Structure Population in Thiol-Passivated Gold Nanoparticles, Journal of Physical Chemistry B, 104, pp. 11013-11018. 2000. Zhang, Q. B., J. Y. Lee, J. Yang, C. Boothroyd and J. X. Zhang. Size and Composition Tunable Ag-Au Alloy Nanoparticles by Replacement Reactions, Nanotechnology, 18, pp. 2007. Zhao, M. Q. and R. M. Crooks. Intradendrimer Exchange of Metal Nanoparticles, Chemistry of Materials, 11, pp. 3379-3385. 1999. Zheng, J., M. S. Stevenson, R. S. Hikida and P. G. Van Patten. Influence of Ph on Dendrimer-Protected Nanoparticles, Journal of Physical Chemistry B, 106, pp. 12521255. 2002. Zheng, N., J. Fan and G. D. Stucky. One-Step One-Phase Synthesis of Monodisperse Noble-Metallic Nanoparticles and Their Colloidal Crystals, Journal of the American Chemical Society, 128, pp. 6550-6551. 2006. Zhou, M., S. H. Chen and S. Y. Zhao. Synthesis of Icosahedral Gold Nanocrystals: A Thermal Process Strategy, Journal of Physical Chemistry B, 110, pp. 4510-4513. 2006. Zou, X. Q., E. B. Ying, H. J. Chen and S. J. Dong. An Approach for Synthesizing Nanometer- to Micrometer-Sized Silver Nanoplates, Colloids and Surfaces aPhysicochemical and Engineering Aspects, 303, pp. 226-234. 2007. 177 Publications PUBLICATIONS 1. Zhang, Q., Xie, J., Liang, J., and Lee, J.Y., Synthesis of Monodisperse Ag-Au Alloy Nanoparticles with Independently Tunable Morphology, Composition, Size and Surface Chemistry and Their 3-D Superlattices. Advanced Functional materials. In press. 2. Zhang, Q., Tan, Y.N., Xie, J., and Lee, J.Y., Colloidal Synthesis of Plasmonic Metallic Nanoparticles. Plasmonics, 2009, 4(1) xxxx. (Invited article). 3. Zhang, Q., Xie, J., Yang, J., and Lee, J.Y., Monodisperse Icosahedral Ag, Au and Pd Nanoparticles: Size Control Strategy and Superlattice Formation. ACS Nano, 2009 3(1), p. 139-148. 4. Zhang, Q., Xie, J., Lee, J.Y., Zhang, J., and Boothroyd, C., Synthesis of Ag@AgAu Metal Core/Alloy Shell Bimetallic Nanoparticles with Tunable Shell Compositions by a Galvanic Replacement Reaction. Small, 2008. 4(8): p. 10671071. 5. Zhang, Q., Lee, J.Y., Yang, J., Boothroyd, C., and Zhang, J.X., Size and composition tunable Ag-Au alloy nanoparticles by replacement reactions. Nanotechnology, 2007. 18(24). 245605. 6. Zhang, Q., Xie, J., Yu, Y., Yang, J., and Lee, J.Y., Tuning the Crystallinity of Au Nanoparticles. Submitted 7. Xie, J., Zhang, Q., Lee, J.Y., and Wang, D.I.C., The Synthesis of SERS-Active Gold Nanoflower Tags for In Vivo Applications. ACS Nano, 2008, 2(12), 24732480. 8. Xie, J., Zhang, Q., Lee, Y., and Wang, D.I.C., General method for extended metal nanowire synthesis: Ethanol induced self-assembly. Journal of Physical Chemistry C, 2007. 111(46): p. 17158-17162. 9. Yang, J.H., Lee, J.Y., Zhang, Q., Zhou, W.J., and Liu, Z.L., Carbon-supported pseudo-core-shell Pd-Pt nanoparticles for ORR with and without methanol. Journal of the Electrochemical Society, 2008. 155(7): p. B776-B781. 10. Yang, J., Zhang, Q., Lee, J.Y., and Too, H.P., Dissolution-recrystallization mechanism for the conversion of silver nanospheres to triangular nanoplates. Journal of Colloid and Interface Science, 2007. 308(1): p. 157-161. 178 Publications 11. Yang, J., Elim, H.I., Zhang, Q., Lee, J.Y., and Ji, W., Rational synthesis, selfassembly, and optical properties of PbS-Au heterogeneous nanostructures via preferential deposition. Journal of the American Chemical Society, 2006. 128(36): p. 11921-11926. 179 [...]... distribution 2.2 Syntheses of monometallic Ag and Au nanoparticles There are a large number of publications on the synthesis of Au and Ag nanoparticles Most of the synthesis methods for Au nanoparticles and Ag nanoparticles share many common features Hence the discussion on the synthesis of Au and Ag nanoparticles will be based on the methods of preparation rather than the type of nanoparticles produced... Au or Ag monometallic nanoparticles as well as Ag-Au bimetallic nanoparticles These topics are presented in four sections The discussion begins with the general principles of monodisperse nanoparticle formation This is followed by a survey of current methods of preparation of monometallic Au and Ag nanoparticles; and Ag-Au bimetallic nanoparticles including alloy, core-shell and hollow nanoparticles, ... nanoparticles; C: TEM image of monodisperse Au icosahedral nanoparticles; D: HRTEM image of an isolated Au icosahedral nanoparticle 61 Figure 4.6 A: UV/Vis absorption spectrum of Pd icosahedral nanoparticles The inset is the digital photo of the Pd nanoparticles in toluene B: EDX spectrum of the Pd icosahedral nanoparticles; C: TEM image of monodisperse Pd icosahedral nanoparticles; D: HRTEM image of an isolated... noble metal nanoparticles in chemical and electrochemical reactions (Roucoux et al, 2002; Astruc et al., 2005) The properties of noble metal nanoparticles can be tuned by their size, crystallinity, morphology and surface chemistry (Burda et al., 2005) In addition, the properties of 1 Chapter 1 noble metal nanoparticles can also be modified by combining two metals within a single particle to form bimetallic... image of the mixture of icosahedral and decahedral Ag MTPs and single-crystalline TO nanoparticles 57 Figure 4.4 A: TEM image of monodisperse Ag icosahedral nanoparticles; B: HRTEM image of an isolated Ag icosahedral nanoparticle 59 Figure 4.5 A: UV/Vis absorption spectrum of Au icosahedral nanoparticles The inset is the digital photo of the Au organosol; B: EDX spectrum of the Au icosahedral nanoparticles; ... 7.6 Evolution of the absorption spectra of bimetallic nanoparticles 137 Figure 8.1 A: UV-visible absorption spectra of citrate-stabilized and MBSA-capped Ag nanoparticles; B: Digital pictures of citrate-stabilized and MBSA-capped Ag nanoparticles 146 Figure 8.2 TEM image and histogram of MBSA-protected Ag nanoparticles before size-sorting 146 Figure 8.3 TEM image and histogram of Ag nanoparticles after... representation of the two-layer superlattice; F: SEM image of a superlattice formed in the solution; G: high-magnification SEM image of the superlattice formed in the solution 67 Figure 5.1 TEM image of Ag nanoparticles; Inset shows the HRTEM image of a Ag nanoparticle 75 Figure 5.2 A: EDX spectrum of alloy nanoparticles from AgAu-2; B: The change of atomic percentage of Au with the volume of 1 mM HAuCl4... Normalized UV-Visible spectra of Ag, Au and alloy nanoparticles The inset shows the change of absorbance peak with the atomic percentage of Au; B: photos of Ag1, AgAu-1, 2, 3 and 4 and Au nanoparticles (from right to left) 77 Figure 5.4 A-D: TEM images of nanoparticles from AgAu-1, 2, 3 79 and4 Figure 5.5 A: HRTEM image of a nanoparticle in AgAu-2; B: Electron diffraction(ED) pattern of nanoparticles from AgAu-2;... after the addition of HAuCl4 as viewed from the , , and directions; D-F: 133 XV corresponding schematic illustrations of the bimetallic nanoparticles Figure 7.5 A-C: HRTEM images of the bimetallic nanoparticles formed 360 seconds after the addition of HAuCl4 as viewed from the , , and directions; D-F: corresponding schematic illustrations of the bimetallic nanoparticles 135... Schematic illustration of the total free energy of a nanoparticle as a function of the nucleus radius (Cao, 2004) 10 Figure 2.2 Schematic illustration of the formation process of colloidal particles (Haruta and Delmon, 1986) 11 Figure 3.1 Crystallinity tunable synthesis of Au nanoparticles A-B: TEM and HRTEM images of single-crystalline Au nanoparticles; C-D: TEM and HRTEM images of round decahedral Au . SYNTHESIS OF MONODISPERSE NOBLE METAL NANOPARTICLES ZHANG QINGBO NATIONAL UNIVERSITY OF SINGAPORE 2008 SYNTHESIS OF MONODISPERSE NOBLE METAL NANOPARTICLES. size distribution of icosahedral Ag nanoparticles 59 4.3.3 Synthesis of monodisperse Au and Pd icosahedral nanoparticles 61 4.3.4 Size Manipulation of monodisperse icosahedral nanoparticles 65. illustrations of the bimetallic nanoparticles. Evolution of the absorption spectra of bimetallic nanoparticles. A: UV-visible absorption spectra of citrate-stabilized and MBSA-capped Ag nanoparticles;

Ngày đăng: 11/09/2015, 09:01

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan