1. Trang chủ
  2. » Giáo Dục - Đào Tạo

abrication and characterization of chemically modified multiferroic bismuth ferrite thin films

186 162 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 186
Dung lượng 8,22 MB

Nội dung

FABRICATION AND CHARACTERIZATION OF CHEMICALLY MODIFIED MULTIFERROIC BISMUTH FERRITE THIN FILMS YAN FENG (M Sc) A THESIS SUBMITED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF MECHANICAL ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2011 Acknowledgements I would like to express my sincere gratitude to my supervisors, Prof Lu Li, and Prof Lai Man On from Department of Mechanical Engineering, National University of Singapore (NUS), and Prof Zhu Tiejun from Department of Materials Science and Engineering, Zhejiang University (ZJU) for giving me the opportunity to work on this exciting project I would especially like to thank all of them for their guidance and support throughout my PhD study at NUS I benefited from their guidance in every aspect during my Ph.D research, such as the discussions we held and intellectual suggestions they made regarding my work I am grateful for the insights and advice Prof Zeng Kaiyang shared with me His suggestions and guidance were a great help in performing piezoresponse force microscopy (PFM) and Kelvin probe force microscopy (KPFM) on the microscopic ferroelectric properties as related to the experiments in Chapter I would like to thank Prof Rü diger-A Eichel from Institut fü Physikalische Chemie, r Albert-Ludwigs-Universitä Freiburg (German) for his kind assistance and advice on t the understanding of the magnetic phase transition and magnetoelectric coupling effect via electron paramagnetic response (EPR) It is a great honor for me to have opportunity to work in his group for four months Also, I would like to thank Dr Emre Erdem and Dr Peter Jakes in this group for their kind advice and suggestions I would like to thank Prof I M.Reaney from Department of Engineering Materials, University of Sheffield for his kind assistance the understanding of the microstructure of the investigated thin films via HRTEM I I would also like to thank Dr Zhang Zhen as a collaborator All the ideas we shared and discussed have proven very useful This project would not have gone so well without his contribution at the forefront of this research I specially thank Dr Wang Shijie for his help and advice at the beginning of my studies I would like to express my gratitude for the help of my colleagues and collaborators: Dr Xiahui, Mr Wang Hailong, Mr Ye Shukai, Mr Xiao Pengfei, Miss Zhu Jing, Mr Song Bohang and other members in Prof Lu’s research group In addition, I would like to give my special thanks to the staff of Materials Science Laboratory, Department of Mechanical Engineering, and National University of Singapore Finally, I want to thank my family for their understanding, encouragement, and endless love throughout my life II Table of Contents Acknowledgements I Table of Contents III Abstract VII List of Tables VIII List of Figures IX List of Symbols and Abbreviations XVII List of Publications XVIII Chapter Introduction 1.1 Overview & Motivations 1.2 Outline Chapter Literature Review 2.1 Magnetoelectric effect and multiferroic materials 2.1.1 Magnetoelectric effect[14] 2.1.2 Multiferroics 2.1.3 Single phase multiferroics [3] 2.1.4 Multiferroic composites 10 2.2 Multiferroic BiFeO3 10 2.2.1 Structure 10 2.2.2 Ferroelectricity 12 2.2.3 Dielectric Properties 13 III 2.2.4 Magnetism 14 2.2.5 Magnetoelectric Coupling 15 2.2.6 Domains and domain walls[46] 16 2.3 Device application 18 2.3.1 Data storage [1] 18 2.3.2 Optoelectronic devices 19 2.4 Thin film deposition and characterization 21 2.4.1 Pulsed Laser Deposition (PLD) 21 2.4.2 X-Ray diffraction (XRD) 22 2.4.3 Atomic force microscopy (AFM) 22 2.4.4 Macroscopic Ferroelectric measurement 23 2.4.5 Dielectric measurement 24 2.4.6 Piezoresponse force microscopy (PFM) 25 2.4.7 Switching Spectroscopy PFM (SS-PFM) 26 2.4.8 Kelvin probe force microscopy (KPFM) 27 2.4.9 Vibration sample magnetometer (VSM) 28 2.4.10 Magnetic force microscopy (MFM) 28 Chapter Experimental Procedures 30 3.1 Fabrication of Targets 30 3.1.1 Pure BiFeO3 target 30 3.1.2 Chemically Modified BiFeO3 targets 30 3.2 Thin film growth 31 IV 3.2.1 Substrate and target cleaning 31 3.2.2 Film deposition 31 3.3 Thin film characterization 32 Chapter Pure BFO thin films 34 4.1 Introduction 34 4.2 Epitaxial BiFeO3 thin films 34 4.2.1 Structures of (001), (011) and (111) oriented BiFeO3 thin films 34 4.2.2 Surface morphology 37 4.2.3 Macroscopic electrical properties of (001), (011) and (111) oriented BiFeO3 thin films 37 4.2.4 Ferroelectric domain structure using PFM 40 4.2.5 Magnetoelectric coupling of BiFeO3 thin films via PFM and MFM 46 4.3 Polycrystalline BiFeO3 thin films 48 4.3.1 BFO on Pt/TiO2/SiO2/Si substrate 48 4.3.2 Size effect on the piezoelectric response of BFO on Pt/TiO2/SiO2/Si substrate 56 4.4 Effects of bottom electrode on switching behavior at nanoscale 61 4.4.1 Structure and multiferroic properties of BFO on LaNiO3/Si and SrRuO3/Si substrates 61 4.5 Effect of bottom electrode on the surface potential of polycrystalline BFO 70 Chapter Chemically modified BFO thin films 74 5.1 Introduction 74 V 5.2 La doped BFO 76 5.3 Ru doped BFO 84 5.4 La, Ru codoped BiFeO3 93 5.5 Pb(Zr0.52Ti0.48)O3 (PZT) codoped BFO 101 5.6 Conclusions 110 Chapter Leakage mechanisms of BFO 113 6.1 Introduction 113 6.2 Deposition temperature dependent leakage mechanism 115 6.3 Oxygen pressure dependent leakage mechanism 119 6.4 Leakage mechanism in La and Ru codoped BFO 123 6.5 Conclusions 130 Chapter EPR study of BFO 132 7.1 Introduction 132 7.2 EPR study of pure BFO 134 Chapter Conclusions and Future work 143 8.1 Conclusions 143 8.2 Future Work 145 Reference 146 VI Abstract Magnetoelectric multiferroics exhibit coexisting magnetic and ferroelectric phases, with coupling between magnetic and electric ordering In this work, pulsed laser deposition (PLD) technology has been used to deposit multiferroic pure and chemically modified BiFeO3 (BFO) thin film on different substrates The novelty of our work is to present a systematically of chemically modified BFO thin films combining with the macroscopic and microscopic ferroelectric properties and local domain switching behavior The microstructures, electrical and magnetic properties of the as-grown films are systematically investigated A, B-site and A, B codoped effects have been determined, suggesting that the dopants could greatly impact the multiferroic properties of BFO films In addition, the leakage mechanism of the multiferroic films have been studied at different growth conditions and different measurement conditions, such as temperature and electric field Furthermore, defect chemistry and low temperature magnetic phase transition have been evaluated via electron paramagnetic resonance (EPR) VII List of Tables Table 3.1 Deposition parameter for thin films………………………………… 32 Table 4.1 eff The orientation dependence of d33, Ps, and effective coefficient, Q33 43 Table 7.2 Spin counting for the samples annealed in different atmospheres… 136 VIII List of Figures Figure 2.1 Phase control in ferroic and multiferroics………………………………6 Figure 2.2 The relationship between multiferroic and magnetoelectric………… Figure 2.3 Schematic of the crystal structure of BFO and the ferroelectric polarization (arrow) and antiferromagnetic plane (shaded planes)… 12 Figure 2.4 Polarization of BiFeO3: (a) bulk single crystal and (b) epitaxial thin film…………………………………………………………………….13 Figure 2.5 Schematics of the 64 nm antiferromagnetic circular cycloid The canted antiferromagnetic spins (blue and green arrows) give rise to a net magnetic moment (purple arrows) that is specially averaged out to zero due to the cycloidal rotation The spins are contained within the plane defined by the polarization vector…………………………………….14 Figure 2.6 Schematics of the planes of spin rotations and cycloids k~1 vector for the two polarization domains separated by a domain wall (in light gray) Rotating the polarization by 71o results in a change of the magnetic easy plane, meaning that sublattice magnetization can be switched by an applied voltage……………………………………………………… 16 Figure 2.7 Schematic of the three types of ferroelectric domain walls The ferroelectric polarization (bold arrows) and antiferromagnetic plane (shaded planes)……………………………………………………… 17 Figure 2.8 MERAMs based on exchange-bias coupling between a multiferroic that is ferroelectric and antiferromagnetic (FE-AFM, green layer), and a thin ferromagnetic electrode (blue layer) A tunneling barrier layer between the two top ferromagnetic layers provides the two resistive states……19 Figure 2.9 The variation of photocurrent with sample rotation under illumination with a linearly polarized light The experimental sketch is shown in the inset The PV effect becomes maximum when the polarized-light electric field is parallel to the in-plane component of the ferroelectric polarization and minimum when the field is perpendicular to the inplane component ……………………………………… ………….20 Figure 2.10 Schematic of the pulsed laser deposition system…… ……………… 21 Figure 2.11 Schematic of the experimental set-up for ferroelectric hysteresis loop measurements………………………………………………………….23 Figure 2.12 Schematic structure of the electrical measurement……………………24 Figure 2.13 Schematic of PFM operation…………………………………….……25 IX 70 Meiya L., Min.N., Yungui M., Qibin W and Ong, C K, J Phys D: Appl Phys 40, p 1603, (2007) 71 Das, S R., Bhattacharya, P., Choudhary, R N P., and Katiyar, R S., J Appl Phys., 99: p 066107, (2006) 72 Kumar, M.; Yadav, K L, Appl Phys Lett, 91, p 242901 (2007) 73 Youn-Ki, J., Seong.-Hyeon, H., Solid State Communications, 144, p 329, (2007) 74 Catalan, G, and Scott, J F., Nature, 448, p E4 (, 2007) 75 Catalan, G., Appl Phys Lett, 88, p 102902, (2006) 76 Sosnowska, I, Peterlin-Neumaier, T., and Steichele, E., J Phys C: Solid State Phys 15, p 4835, (1982) 77 Fischer, P, Polomska, M., Sosnowska, I., and Szymanski, M, J Phys C: Solid State Phys., 13, p 1931, (1980) 78 Cazayous, M.; Gallais, Y.; Sacuto, A.; de Sousa, R.; Lebeugle, D.; Colson, D., Phys Rev Lett., 101, p 037601 (2008) 79 Singh, M K and Katiyar, R S and Scott, J F, J Phys.:Condens Matter, 20, p 252203, (2008) 80 Scott, J.F., Journal of Magnetism and Magnetic Materials, 321, p 1689, (2009) 81 Jie, W, Haumont, R; Jarrier, R; Berhtet, P, and Dkhil, B Appl Phys Lett, 96: p 102509, (2010) 82 Qingyu, X, Haifa, Z, Wu, D., Qiu, T., and Xu, M X., Appl Phys Lett, 95: p 112510, (2009) 83 Yao, W, Jiang, Q He, H., and Nan, C W., Appl Phys Lett, 88, p 142503, (2006) 84 Kumar, M and Yadav, K.L.,.Appl Phys Lett, 91, p 112911, (2007) 151 85 Shannigrahi, S R., Huang, A., Chandrasekhar, N., Tripathy, D., and Adeyeye, A O., Appl Phys Lett, 90, p 022901, (2007) 86 Shan-Tao, Z., Yi Lu, Z., Ming-Hui, D.,, Chao-Ling, C., Yan-Feng L., ZhiGuo, Z., Yong-Yuan, M., and Nai-Ben, P., and X Q., Appl Phys Lett, 88: p 162901, (2006) 87 Yan, Z., Wang, K F., Qu, J F., Wang, Y., Song, Z T., and Feng, S L., Appl Phys Lett, 91, p 082906, (2007) 88 Karimi, S., Reaney, I.M., Levin, I., and Sterianou, I Appl Phys Lett, 94: p 112903, (2009) 89 Khomchenko, V A., Shvartsman, V V., Borisov, P., Kleemann, W., Kiselev, D A., Bdikin, I K., Vieira, J.M., and Kholkin, A L.„ Acta Materialia 57, p 5137 (2009) 90 Zhao, T., Scholl, A., Zavaliche, F., Lee, K., Barry, M., Doran, A., Cruz, M P., Chu, Y H., Ederer, C., Spaldin, N A., Das, R R., Kim, D M., Baek, S H., Eom, C B and Ramesh, R Nature Materials, 5: p 823, (2006) 91 Chu, Y H., Zhao, T., Cruz, M P., Zhan, Q., Yang, P L., Martin, L W., Huijben, M., Yang, C H., Zavaliche, F., Zheng, H., Ramesh, R., Appl Phys Lett, 90: p 252906, (2007) 92 Folkman, C M., Baek, S H , Jang, H W., Eom, C B., Nelson, C T., Pan, X Q., Li, Y L., Chen, L Q., Kumar, A., Gopalan, V., and Streiffer, S K Appl Phys Lett, 94, p 251911, (2009) 93 Catalan, G., Bea, H., Fusil, S., Bibles, M., Paruch, P., Barthelemy, A and Scott, J F Physical Review Letters, 100, p 027602 (2008) 94 Seidel J., Martin, L.W , He, Q., Zhan, Q., Chu, Y.-H., Rother, A., Hawkridge, M E, Maksymovych, P., Yu, P., Gajek, M., Balke, N., Kalinin, S V., 152 Gemming, S., Wang, F., Catalan, G., Scott, J F., Spaldin, N A., Orenstein, J and Ramesh, R Nature Materials, 8: p 229, (2009) 95 Clark, S J.; Robertson, J., Appl Phys Lett, 90, p 16868 (2007) 96 Basu, S R.; Martin, L W.; Chu, Y H.; Gajek, M.; Ramesh, R.; Rai, R C.; Xu, X.; Musfeldt, J L., Appl Phys Lett, 92: p 091905, (2008) 97 Choi, T., Lee, S , Choi, Y J., Kiryukhin, V., Cheong, S.-W Science 324: p 63, (2009) 98 Norton, D.P., Pulsed laser deposition of complex materials: Progress towards applications, in Pulsed lased deposition of thin films, R Eason, Editor WileyInterscience (2007) 99 Dawber, M., Rabe, K.M., and Scott, J F., Review of modern physics, 77, p 1083, (2005) 100 Proksch, R., Piezoresponse Force Microscopy with Asylum Research AFMs 101 Eugene A E., Sergei V K., Stephen J., Svetlana L B., and Anna N M., 102, p 014109, (2007) 102 Morozovska, A N.; Bravina, S L.; Eliseev, E A.; Kalinin, S V, arXiv:condmat/0608289, 2006 103 Stephen J., Arthur P B., and Sergei V K., Appl Phys.Lett, 88, p 062908, (2006) 104 Sergei V K and Dawn A B., Nano Letters, 4, p 555, (2004) 105 Kalinin, S V.; Bonnell, D A., Physical Review B, 63, p 125411, (2001) 106 Zheng, H., Growth and characterization of multiferroic BaTiO3-CoFe2O4 thin film nanostructures., University of Maryland p 32, (2004) 153 107 Yang, S Y., Zavaliche, F., Mohaddes-Ardabili, L., Vaithyanathan, V., Schlom, D G., Lee, Y J., Chu, Y H., Cruz, M P., Zhan, Q., Zhao, T., and Ramesh, R., Applied Physics Letters, 87: p 102903,( 2005) 108 Rout, D., Seung Ho, H.; Kyoung-Seok, M., Ho Gi, K, Chae I, C., Suk-Joong L, K,, Applied Physics Letters, 95: p 122509 (2009) 109 Palai, R., Katiyar, R., Schmid, H., Tissot, P., Clark, S., Robertson, J., Redfern, S., Catalan, G., Scott, J f., Physical Review B, 77: p 014110, (2008) 110 Kartopu, G., Lahmar, A., Habouti, S., Solterbeck, C-L., Elouadi, B , and EsSouni, M Applied Physics Letters, 92: p 151910, (2008) 111 Lahmar, A., Habouti, S., Dietze, M., Solterbeck, C.-H., and Es-Souni, M Applied Physics Letters, 94 p 012903, (2009) 112 Manoj K S., Hyun M J., Sangwoo R., and Moon-Ho J., Appl Phys Lett , 88: p 042907, (2006) 113 Haimei Z., Florian.S., Q, Zhan, Pei-Ling Y., Wen-Kuo H., Florin Z., Ying-Hao C., Uli D., and Ramesh R., Advanced Materials., 18: p 2747, (2006) 114 Jiefang L., Junling.W., Wuttig M., Ramesh, R., Wang, N., Ruette, B., Pyatakov, A P., Zvezdin, A K., and Viehland, D., Applied Physics Letters 84: p 5261, (2004) 115 Kim, D J., Jo, J Y., Kim, Y S., Chang, Y J., Lee, J S., Yoon, J G., Song, T K., Noh, T W Physical Review Letters, 95, p 237602 (2005) 116 Chu, Y H., Zhan, Q., Martin, L W., Cruz, M P., Yang, P.-L Pabst, G W., Zavaliche, F., Yang, S.-Y., Zhang, J.-X., Chen, L,-Q., Schlom, D G., Lin, I N., Wu, T.-B and Ramesh, R., Advanced Materials, 18, p 2307, (2006) 117 Gur, I., Fromer, N A., Geier, M L., and Alivisatos, A P., Science, 310, p 462 (2005) 154 118 Nath, R., Zhong, S., Alpay, S P., Huey, B D., and Cole, M W., Applied Physics Letters, 92, p 012916, (2008).- 119 Pintilie, L and Alexe, M., Journal of Applied Physics 98, p 124103 (2005) 120 Rodriguez, B J., Callahan, C., Kalinin, S V., and Proksch, R, Nanotechnology, 18, p 475504, (2007) 121 Jesse, S., Lee, H N., and Kalinin, S V., Review of scientific instruments 77, p 073702 (2006) 122 Hong, S., Woo, J., Shin, H., Jeon, J U.; Pak, Y E., Colla, E L., Setter, N., Kim, E., No, K., Journal of Applied Physics, 89, p 1377, (2001) 123 Zavaliche, F., Zheng, H., Mohaddes-Ardabili, L., Yang, S Y., Zhan, Q., Shafer, P., Reilly, E., Chopdekar, R , Jia, Y., Wright, P., Schlom, D G., Suzuki, Y, and Ramesh, R.,Nano Letters, 5, p 1793,( 2005) 124 Hamada, S., Himib, K., Okunoa, T., and Takanashi, K., Journal of Magnetism and Magnetic Materials, 240, p 539,( 2002) 125 Wu, J G, and Wang, J., Applied Physics Letters, 2010 108, p 024104 (2010) 126 Chu, Y.-H., He, Q., Yang, C-H., Yu, P, Martin, L W., Shafer, P., and Ramesh, R., Nano Lett, 9, p 1726 (2009) 127 Yun, K Y., Ricinschi, D., Kanashima, T and Okuyama, M., Applied Physics Letters, 89, p 192902 (2006) 128 Chen, J., Xing, X X., Watson, A., Wang, W., Yu, R., Deng, J, Yan, L., Sun, C., and Chen, X., Chemistry of Materials, 19(15): p 3598 (2007) 129 Mukherjee, S., Gupta, R., Garg, A., Bansal, V and Bhargava, S., Journal of Applied Physics, 2010 107, p.123535 130 Kundu, A K., Ranjith, R., Pralong, V., Caignaert, V., and Raveau B., Journal of Materials Chemistry, 18, p 4280 (2008) 155 131 Kamba, S., Nuzhnyy, D., Savinov, M., Šebek, J Petzelt, J., Prokleška, J., Haumont, R., and Kreisel J.,.Physical Review B, 75, p 024403, (2007) 132 Jiang, Q Qiu, J H., Journal of Applied Physics, 99, p 103901, (2006) 133 Venkatesan, S., Daumont, C., Kooi, B J., Noheda, B and Hosson, J T M D Physical Review B, 80, p 214111 (2009) 134 Wang, J., Zheng, H., Ma, Z., Prasertchoung, S., Wuttig, M., Droopad, R., Yu, J., Eisenbeiser, K., Ramesh, R., Applied Physics Letters, 85, p 2574, (2004) 135 Roytburd, A L., Journal of Applied Physics, 83, p 228, (1998) 136 Young P., Se M J., Sang I M., Kyu W J., Sung H K., Joon T S and Junsin Y., Japanese Journal of Applied Physics, 38, p 6801,(1999) 137 Lee, C.-C.; Wu, J.-M.; Hsiung, C.-P., Applied Physics Letters, 90, p 182909, (2007) 138 Ramesh, R., Chan, W K., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J M., Keramidas, V G., Fork, D K., Lee, J., and Safari, A., Applied Physics Letters, 61, p 1537, (1992) 139 Zhu, T J., Lu, L., and Thompson, C V., Journal of Crystal Growth, 273, p 172, (2004) 140 Tsai, M S., Sun.S C., and Tseung-Yuen, T., IEEE Transactions on electron devices,46, p 1829, (1999) 141 Pelleg, J., Zevin, L Z., and Lungo, S., Thin Solid Films, 197, p 117, (1991) 142 Okuda, N., Saito, K., Funakubo, H., Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 39, p 572, (2000) 143 Zhu, T.J., Chen, X., Zhao, X B, Lu, L., Functional Materials Letters, 1(3): p 253, (2008) 156 144 Eom, C B Van Dover, R B Phillips, Julia M Werder, D J Marshall, J H Chen, C H Cava, R J Fleming, R M Fork, D K., Applied Physics Letters, 63, p 2570, (1993) 145 Cheng, Z X., Zhao, H Y., Du, Y., Kimura, H., Ozawa, K., and Wang, X L , Scripta Materialia, 65, p 249 (2011) 146 Chu, Y H., Cruz, M P., Yang, C H., Martin, L W Yang, P.-L., Zhang, J X., Lee, K., Yu, P., Chen, L.-Q., and Ramesh, R., Advanced Materials, 19: p 2662, (2007) 147 Cruz, M P., Chu, Y H., Zhang, J X., Yang, P L., Zavaliche, F., He, Q., Shafer, P., Chen, L Q., and Ramesh, R., Physical Review Letters, 99 p 217601, (2007) 148 Dho, J H., Qi, X D, Kim, H., MacManus-Driscoll, J L., and Blamire, M G., Advanced Materials, 18, p 1445, (2006) 149 Jang, H W., Ortiz, D., Baek, S.-H., Folkman, C M., Das, R R., Shafer, P., Chen, Y., Pan, Xi., Ramesh, R and Eom C.-B., Advanced Materials, 21, p 817, (2009) 150 Wu, J.G and Wang, J Acta Materialia, 58, p 1688, (2010) 151 Lian, L and Sottos, N R., Journal of Applied Physics, 87, p 3941,( 2000) 152 Chiu, Y P., Chen, Y T., Huang, B C., Shih, M C., Yang, J C., He, Q., Liang C W., Seidel, J., Chen Y C., Ramesh, R., Chu, Y., H., Advanced Materials, 23, p 1530 (2011) 153 Zhang, Q., Kim, C H., Jang, Y H., Hwang, H J., and Cho, J H Applied Physics Letters, 96, p 152901, (2010) 154 Yunseok; K., Bü hlmann, S., Kim, J., Park, M., No, K., Kim, Y K., and Hong, S, Applied Physics Letters, 91, p 052906, (2007) 157 155 Yunseok K., Seungbum H., Seung-Hyun K., and Kwangsoo N., J Electroceram, 17, p 185, (2006) 156 Yunseok K., Moonkyu P., Simon B., Seungbum H., Yong K K., Hyoungsoo K., Jiyoon K., and Kwangsoo N., Journal of Applied Physics, 107, p 054103, (2010) 157 Yunseok K, Changdeuck B, Kyunghee R, Hyoungsoo K., Yong K K., Seungbum H., and Hyunjung S., Applied Physics Letters, 94, p 032907, (2009) 158 Son, J Y., Lee, G., Shin, Y H, Applied Physics Letters, 94, p 162902, (2009) 159 Yang, K G., Zhang, Y L., Yang, S H and Wang, B., Journal of Applied Physics, 107, 124109, (2010) 160 Martin, C., Maignan, A., Hervieu, M., Autret, C., Raveau, B., Khomskii, D I Physical Review B, 63: p 174402, (2001) 161 Onose, Y., He, J P., Kaneko, Y., Arima, T., and Tokura, Y., Applied Physics Letters, 86: p 242502, (2005) 162 Manoharan, S S., Ju, H L., Krishnan, K M., Journal of Applied Physics, 83, p 7183, (1998) 163 Zhong, Z., and Ishiwara H., 95, 112902, (2009) 164 Cheng, Z., Wang, X., Dou, S,; Kimura, H,; Ozawa, K, Physical Review B, 77, p 092101, (2008) 165 Comyn, T P., Robert, T.C., Miles, E and Milne, S J Applied Physics Letters, 93, p 052909, (2008) 166 Hiroshi, U., Risako, U., Hiroshi, N., Hiroshi, F and Seiichiro, K Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 44, p L561, (2005) 158 167 Gao, F., Cai, C., Wang, Y., Dong, S., Qiu, X Y., Yuan, G L., Liu, Z G and Liu, J.-M., Journal of Applied Physics, 99, p 2195368 (2006) 168 Naganuma, H., Miura, J., and Okamura S., Applied Physics Letters, 93, p.052901 (2008) 169 Martin, L W., Chu, Y.-H., Holcomb, M B Huijben, M and Yu, P and Han, S.-J and Lee, D Wang, S X and Ramesh, R., Nano Lett, 8, p 2050,( 2008) 170 Balke, N., Choudhury, S., Jesse, S., Huijben, M., Chu, Y H., Baddorf, A P., Chen, L Q., Ramesh, R and Kalinin, S V Nature Nanotechnology, 4: p 868, (2009) 171 Zheng, R.Y., Wang, J and Ramakrishna, S., Journal of Applied Physics, 104, p 296696 (2008) 172 Chu, Y H.; Zhan, Q.; Yang, C.-H.; Cruz, M P.; Martin, L W.; Zhao, T.; Yu, P.; Ramesh, R.; Joseph, P T.; Lin, I N.; Tian, W.; Schlom, D G., Applied Physics Letters, 92, p.102909, (2008) 173 Ryu, S, Son, J Y., Shin, Y H, Jang, H M and Scott, J F Applied Physics Letters, 95, p 242902 (2009) 174 Daumont, C J M, Mannix, D, Venkatesan, S., Catalan, G, Rubi, D., Kooi, B J., Hosson, J Th M D., and Noheda, B, Journal of Physics-Condensed Matter, 21(18): p 182001, (2009) 175 Gruverman, A., Auciello, O., and Tokumoto, H., Annual Review Materials Science, 28: p 101, (1998) 176 Ihlefeld, J F., Borland, W.J., and Maria, J P Advanced functional materials, 17, p 1199, (2008) 177 Malavasi, L., Mozzati, M.C., Tullio, E D., Tealdi, C., and Flor, G Physical Review B, 71, p 174435, (2005) 159 178 Kan, D., Anbusathaiah, V., and Takeuchi, I., Advanced Materials, 23, 1765, (2011) 179 Hardcastle, F D., and Washs I.E., Journal of Solid State Chemistry, 97, p 319, (1992) 180 Zhou, J S., Goodenough, J B., Physical Review B, 68, p 054403 (2003) 181 Selbach, S M., Tybell, T., Einarsrud, M A and Grande, T Chemistry of Materials, 21, p 5176, (2009) 182 Kumaresavanji, M, Sousa, L.L.L., Machado, F L., Adriano, C., Pagliuso, P G., Saitovitch, E M B and Fontes, M B Journal of Physics: Condensed matter, 22(23): p 236003, (2010) 183 Yan, F., Lai M O, Lu L and Zhu, T J Journal Physics Chemistry C, 114, p 6994, (2010) 184 You, L.; Chua, N T.; Yao, K.; Chen, L.; Wang, J., Physical Review B, 80, p 024105, (2009) 185 Portmann, O., Vaterlaus, A and Pescia, D., Nature, 422,p 701, (2003) 186 Wang, D H., Yan, L., Ong, C K and Du, Y W Applied Physics Letters, 89, p 182905, (2006) 187 Ederer C and Spaldin, N A., Physical Review B, 71, p 060401(R), (2005) 188 Armelao, L., Bottaro, G., Bovo, L Maccato, C., Pascolini, M Sada, C., Soini, E., and Tondello, E., Journal of Physical Chemistry C, 113, p 14429, (2009) 189 Huang, Y L., Zhu, W L., Feng, X Q and Man, Z Y Journal of Solid State Chemistry, 172, p 188,( 2003) 190 Lin, Y.-H., Jiang, Q., Wang, Y., Nan, C.-W.; Chen, L.; Yu, J., Applied Physics Letters, 90, p 172507, (2007) 160 191 Neaton, J B., Ederer, C., Waghmare, U V., Spaldin, N A., and Rabe, K M Physical Review B, 71, p 014113, (2005) 192 Hu, G D., Fan, S H., Yang, C H., and Wu, W B., Applied Physics Letters, 92: p 192905, (2008) 193 Kim, T H., Beak, S H., Jang, S Y., Yang, S M., Chang, S H., Song, T K., Yoon, J G., Eom, C B., Chung, J S., and Noh, T W., Applied Physics Letters, 98, 022902, (2011) 194 Huai, Y., Albert, F., Nguyen, P., Pakala, M., and Valet T., Applied Physics Letters, 84, p 3118, (2004) 195 Baek, S H, Folkman, C M., Park, J W., Lee, S., Bark, C W., Tybell, T., and Eom, C B., Advanced Materials, 23: p 1621,(2011) 196 Zhou, Y., Chan, H K., Lam, C H., and Shin, F G., Journal of Applied Physics, 98, p 024111, (2005) 197 Lee, Y.-H., Wu, J.-M and Lai, C.-H., Applied Physics Letters, 88, p 042903, (2006) 198 Pontes, F M., Leite, E R., Longo, E., Varela, J A., Araujo, E B., and Eiras, J A Applied Physics Letters, 76, p 2433, (2000) 199 Kornev, I., Fu, H., Bellaiche, L., Physical Review Letters, 93: p 196104, (2004) 200 Ranjith, R., Prellier, W , Cheah, J W., Wang, J., and Wu, T., Applied Physics Letters, 92, p 232905, (2008) 201 Khan, Mi A., Comyn, T P and Bell, A J Applied Physics Letters, 92, p.072908, (2008) 202 Rose, A., Physical Review, 97, p 1538, (1955) 203 Lampert, M A., Physical Review, 103, p 1648, (1956) 161 204 Yu, S., Chen, R., Zhang, G., Cheng, J., and Meng, Z., Applied Physics Letters, 89, p 212906, (2006) 205 Nagaraj, B., Aggarwal, S., Song, T K., Sawhney, T and Ramesh, R., Physical Review B, 59, p 16022, (1999) 206 Yang, H., Jain, M., Suvorova, N A., Zhou, H., Luo, H M., Feldmann, D M., Dowden, P C., Depaula, R F., Foltyn, S R., Jia, Q X., Applied Physics Letters, 91, p 072911, (2007) 207 Chung W B, Sangwoo R, Yang M K., Hyun M J., and Hwa S Y., Applied Physics Letters, 90, p 2430678, (2007) 208 Tokura, Y., Science, 312, 1482, (2006) 209 Kim, D., Lee, H., N., Biegalski, M., D., and Christen, H M., Applied Physics Letters, 94: p 012911, (2008) 210 Kumar, M M., Palkar, V R., Srinivas, K., Suryanarayana, S V., Applied Physics Letters, 76, p 2764, (2000) 211 Eerenstein, W., Morrison, F.D., Dho, J., Blamire, M G., Scott, J F., Mathur, N D Science, 307, p 1203a, (2005) 212 Haumont, R , Kreisel, J., Bouvier, P and Hippert, F., Physical Review B, 73, p 132101, (2006) 213 Wen, Z., Shen, X., Wu, J X., Wu, D., Li, A D., Yang, B., Wang, Z, Chen, H Z., and Wang, J., Applied Physics Letters, 96, p 202904, (2010) 214 Yang, H.; Wang, Y Q.; Wang, H.; Jia, Q X., Applied Physics Letters, 96, p.012909, (2010) 215 Clark, S J., and Robertson, J Applied Physics Letters, 94, p 022902 (2009) 216 Pabst, G W., Martin, L W., Chu, Y H and Ramesh, R Applied Physics Letters, 90, p 072902, (2007) 162 217 Yan, F., Sterianou, I., Miao, S Reaney, I M., Lai, M O and Lu, L., Journal of Applied Physics, 105, p 074101, (2009) 218 Clark, S J and Robertson, J Applied Physics Letters, 91, p 072911, (2007) 219 Wang, S J., Miao, S., Reaney, I M., Lai, M O and Lu, L., Journal of Applied Physics, 107, p 104104, (2010) 220 Pintilie, L Vrejoiu, I Hesse, D Lerhun, G and Alexe, M., Physical Review B, 75, p 104103, (2007) 221 Zhang, Z., Wu, P., Chen, L.; Wang, J Applied Physics Letters, 96, p 012905,( 2010) 222 Lu, J., Guenther, A., Schrettle, F., Mayr, F., Krohns, S., Lunkenheimer, P., Pimenov, A., Travkin, V D., Mukhin, A A., and Loidl, A The European Physical Journal B, 75, p 451 (2010) 223 Pimenov, A., Mukhin, A A., Ivanov, V Y., Travkin, V D., Balbashov, A M and Loidl A., Nature Physics, 2, p 97 (2006) 224 Sharma, H B., Singh, B., and Singh, N B Physica B: Condensed Matter, 406, p 351 (2011) 225 Kothari, D., Reddy, V R., Sathe, V G., Gupta, A., Banerjee, A., Awasthi, A M., Journal of Magnetism and Magnetic Materials, 320, p 548, (2008) 226 Scott, J F and Singh, M K and Katiyar, R S , Journal of Physics Condensed Matter., 20, p 425223 (2008) 227 Scott, J F., Singh, M K and Katiyar, R S., Journal of Physics.Condens Matter., 20, p 322203, (2008) 228 Singh, M K Prellier, W., Singh, M P., Katiyar, Ram S., and Scott, J F., Physical Review B, 77, p 144403, (2008) 163 229 Khozeev, D F., Zalessky, A.V., Gippius, A A., Morozova, E N and Bush, A A., Physica B, 329-333: p 848, (2003) 230 Eichel, R.-A., J Am Ceram Soc , 91: p 691, (2008) 231 Bleaney, A, and.Bleaney, B., Electron Pramagnetic Resonance of Transition Ions Psychnoly Journal, 1970 232 Erdem, E, Kamil K., Somer, M., and Eichel, R A Journal of the European Ceramic Society, 30, p 289, (2009) 233 Meštrić, H., Eichel, R.-A., Dinse, K.-P., Ozarowski, A., Tol, J V., Brunel, L C., Kungl, H., Hoffmann, M J., Schö nau, K A., Knapp, M., Fuess, H., Physical Review B, 73, p 184105, (2006) 234 Eichel, R.-A Mestric, H K., Hans H., Michael J., Applied Physics Letters, 88, p 122506, (2006) 235 Eichel, R.-A., Kung, H, and Hoffmann, M J Journal of Applied Physics, 95, p 8092, (2004) 236 Meštrić, H., Eiechel, R A , Dinse, K P., Ozarowski, A., Tol, J V, Brunel, C B., Journal of Applied Physics, 96, p 7440, (2004) 237 Laguta, V V., Glinchuk, M.D, Bykov, I P., Maksimenko, Y L., Rosa, J and Jastrabık, L Physical Review B, 54 p 12353, (1996) 238 Wajnberg, E., Avalos, D.A.-, Jaick, L J EI, Abracado, L., Coelho, J L., Bakuzis, A F., Morais, P C and Esquivel, D M., Biophysical Journal, 78, p 1018, (2000) 239 Rao, C N R and Cheetham, A.K., Science, 276, p 911, (1997) 240 Gupta, R., Joshi, J P., Bhat, S V., Sood, A K and Rao, C N R J Phys.: Condens Matter., 12, p 6919 (2000) 164 241 Xiang, H J., Wei, S H., Whangbo, M.-H and Silva, J L F D Physical Review Letters, 101, p 037209 (2008) 242 Wu W, Guest, J R., Horibe, Y., Park, S., Choi T., Cheong, S W., Bode M., Physical Review Letters, 104, p 217601 (2010) 243 Selbach, S M., Tybell, T., Einarsrud, M A., and Grande, T., Chemistry of Materials, 19, p 6478 (2007) 244 Palai, R, Huhtinen, H, Katiyar, R S., Scott, J F arXiv:0707.1657, 2007 245 Font, R., Alvarez, G., Raymond, O., Portelles, J and Siqueiros, J M Applied Physics Letters, 93, p 172902 (2008) 246 Joshi, J P., Gupta, R , Sood, A K., Bhat, S V., Raju, A R and Rao,.C N R Physical Review B, 65, p 024410, (2001) 247 Shengelaya, A., Zhao, G.-M., Keller, H., Mü ller, K A., Kochelaev, B I Physical Review B, 61, p 5888, (2000) 248 Xu, X S., Angs, M., Brinzari, T V., Hermann, R P., Musfeldt, J L., Christianson, A D., Mandrus, D., Sales, B C., McGill, S., Kim, J -W and Islam, Z Physical Review Letters, 101, p 227602, (2008) 249 Vasudevan, R K., Chen, Y C., Tai, H H., Balke, N., Wu, P P., Bhattacharya, S., Chen, L, Q., Chu, Y H., Lin, I N., Kalinin, S V., Nagarajan, V ACS Nano, 5, p 879, (2011) 250 Maurya, D., Thota, H., Garg, A., Pandey, B., Chand, P and Verma, H C J Phys.: Condens Matter., 21: p 026007 (2009) 165 ... pure BFO thin films Chapter presents the deposition and characterization of the chemically modified BFO thin films Chapter focuses on leakage current mechanism of the pure and chemically modified. .. XPS spectra of the Fe2p lines of the BFO and BLFRO films, the insets are the peak fitting simulations and (b) XPS spectra of the La3d5 lines and fitting simulation of BLFO and BLFRO thin film………... Sc-substituted bismuth ferrite lead titanate thin films Scripta Mater., 64, 458-461 (2011) F Yan, M O Lai, L Lu and T J Zhu Enhanced multiferroic properties and valence effect of Ru-doped BiFeO3 thin films

Ngày đăng: 10/09/2015, 15:48

TỪ KHÓA LIÊN QUAN