1. Trang chủ
  2. » Trung học cơ sở - phổ thông

TÀI LIỆU đại số GIẢI TÍCH lớp 12 năm học 2015 2016

90 523 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 90
Dung lượng 2,04 MB

Nội dung

GV: Nguyễn Văn Huy – 0968 64 65 97 Đại số lớp 12 CHƯƠNG I ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ I TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ Đinh nghóa: Hàm số f đồng biến K  (x1, x2  K, x1 < x2  f(x1) < f(x2) Hàm số f nghịch biến K  (x1, x2  K, x1 < x2  f(x1) > f(x2) Điều kiện cần: Giả sử f có đạo hàm khoảng I a) Nếu f đồng biến khoảng I f(x)  0, x  I b) Nếu f nghịch biến khoảng I f(x)  0, x  I Điều kiện đủ: Giả sử f có đạo hàm khoảng I a) Nếu f (x)  0, x  I (f(x) = số hữu hạn điểm) f đồng biến I b) Nếu f (x)  0, x  I (f(x) = taïi số hữu hạn điểm) f nghịch biến I c) Nếu f(x) = 0, x  I f không đổi I Chú ý: Nếu khoảng I thay đoạn nửa khoảng f phải liên tục VẤN ĐỀ 1: Xét chiều biến thiên hàm số Để xét chiều biến thiên hàm số y = f(x), ta thực bước sau: – Tìm tập xác định hàm số – Tính y Tìm điểm mà y = y không tồn (gọi điểm tới hạn) – Lập bảng xét dấu y (bảng biến thiên) Từ kết luận khoảng đồng biến, nghịch biến hàm số Bài Xét chiều biến thiên hàm số sau: a) y  x  x  b) y  x  x  x  c) y  x  2x2 1 4 x  15x  2x 1 d) y  e) y  x5 3x Bài Xét chiều biến thiên hàm số sau: a) y  6 x  x  x  d) y  2x 1 x2 g) y  x    x HTTP://THAYTOAN.NET b) y  e) y  x2  x2  x x  3x  h) y  x  x c) y  x2  x  x2  x  f) y  x   2  x i) y  x  x Trang Đại số lớp 12 GV: Nguyễn Văn Huy - 0968 64 65 97    x   2 k) y  sin x      l) y  sin x  x    x    2 VẤN ĐỀ 2: Tìm điều kiện để hàm số đồng biến nghịch biến tập xác định (hoặc khoảng xác định) Cho hàm số y  f ( x, m) , m tham số, có tập xác định D  Hàm số f đồng biến D  y  0, x  D  Hàm số f nghịch biến D  y  0, x  D Từ suy điều kiện m Chú ý: 1) y = xảy số hữu hạn điểm 2) Nếu y '  ax  bx  c thì:  a  b   c   y '  0, x  R     a       a  b   c   y '  0, x  R     a      3) Định lí dấu tam thức bậc hai g( x )  ax  bx  c :  Nếu  < g(x) dấu với a b ) 2a  Nếu  > g(x) có hai nghiệm x1, x2 khoảng hai nghiệm g(x) khác dấu với a, khoảng hai nghiệm g(x) dấu với a  Nếu  = g(x) dấu với a (trừ x =  4) So sánh nghiệm x1, x2 tam thức bậc hai g( x )  ax  bx  c với số 0:     x1  x2    P  S        x1  x2   P  S    x1   x2  P  5) Để hàm số y  ax  bx  cx  d có độ dài khoảng đồng biến (nghịch biến) (x1; x2) d ta thực bước sau:  Tính y  Tìm điều kiện để hàm số có khoảng đồng biến nghịch biến: a  (1)     Biến đổi x1  x2  d thaønh ( x1  x2 )2  x1x2  d (2)  Sử dụng định lí Viet đưa (2) thành phương trình theo m  Giải phương trình, so với điều kiện (1) để chọn nghiệm  Bài Chứng minh hàm số sau đồng biến khoảng xác định (hoặc tập xác định) nó: a) y  x  x  13 Trang b) y  x3  3x2  9x  c) y  2x 1 x2 HTTP://THAYTOAN.NET GV: Nguyễn Văn Huy – 0968 64 65 97 Đại số lớp 12 x2  2x  x  2mx  e) y  3x  sin(3x  1) f) y  x 1 xm Bài Chứng minh hàm số sau nghịch biến khoảng xác định (hoặc tập xác định) nó: d) y  a) y  5x  cot( x  1) b) y  cos x  x c) y  sin x  cos x  2 x Baøi Tìm m để hàm số sau đồng biến tập xác định (hoặc khoảng xác định) nó: x mx a) y  x  3mx  (m  2) x  m b) y    2x  3 mx  xm Bài Tìm m để hàm số: d) y  e) y  x  2mx  xm c) y  xm x m f) y  x  2mx  3m2 x  2m a) y  x  x  mx  m nghịch biến khoảng có độ dài b) y  x  mx  2mx  3m  nghịch biến khoảng có độ dài baèng 3 c) y   x  (m  1) x  (m  3) x  đồng biến khoảng có độ dài Bài Tìm m để hàm số: a) y  x3  (m  1) x  (m  1) x  đồng biến khoảng (1; +) b) y  x  3(2m  1) x  (12m  5) x  đồng biến khoảng (2; +) c) y  mx  (m  2) đồng biến khoảng (1; +) xm d) y  xm đồng biến khoảng (–1; +) x m e) y  x  2mx  3m2 đồng biến khoaûng (1; +) x  2m   2 x  x  m f) y  nghịch biến khoảng   ;   2x 1   VẤN ĐỀ 3: Ứng dụng tính đơn điệu để chứng minh bất đẳng thức Để chứng minh bất đẳng thức ta thực bước sau:  Chuyển bất đẳng thức dạng f(x) > (hoặc f(x0), với x  (a; b) \ {x0} Khi f(x0) đgl giá trị cực tiểu (cực tiểu) f c) Nếu x0 điểm cực trị f điểm (x0; f(x0)) đgl điểm cực trị đồ thị hàm số f II Điều kiện cần để hàm số có cực trị Nếu hàm số f có đạo hàm x0 đạt cực trị điểm f (x0) = Chú ý: Hàm số f đạt cực trị điểm mà đạo hàm đạo hàm III Điểu kiện đủ để hàm số có cực trị Định lí 1: Giả sử hàm số f liên tục khoảng (a; b) chứa điểm x0 có đạo hàm (a; b)\{x0} a) Nếu f (x) đổi dấu từ âm sang dương x qua x0 f đạt cực tiểu x0 Trang HTTP://THAYTOAN.NET GV: Nguyễn Văn Huy – 0968 64 65 97 Đại số lớp 12 b) Nếu f (x) đổi dấu từ dương sang âm x qua x0 f đạt cực đại x0 Định lí 2: Giả sử hàm số f có đạo hàm khoảng (a; b) chứa điểm x0, f (x0) = có đạo hàm cấp hai khác điểm x0 a) Nếu f (x0) < f đạt cực đại x0 b) Nếu f (x0) > f đạt cực tiểu x0 VẤN ĐỀ 1: Tìm cực trị hàm số Qui tắc 1: Dùng định lí  Tìm f (x)  Tìm điểm xi (i = 1, 2, …) mà đạo hàm đạo hàm  Xét dấu f (x) Nếu f (x) đổi dấu x qua xi hàm số đạt cực trị xi Qui tắc 2: Dùng định lí  Tính f (x)  Giải phương trình f (x) = tìm nghiệm xi (i = 1, 2, …)  Tính f (x) f (xi) (i = 1, 2, …) Neáu f (xi) < hàm số đạt cực đại xi Nếu f (xi) > hàm số đạt cực tiểu xi Bài Tìm cực trị hàm soá sau: a) y  x  x x4  x2   x  3x  g) y  x 2 d) y  b) y  x  x  x  e) y  x  x  3x  x  h) y  x 1 c) y   x  x  15 x x4 f) y    x2  2 x  x  15 i) y  x 3 Baøi Tìm cực trị hàm số sau: 4x2  2x 1 a) y  ( x  2)3 ( x  1)4 b) y  d) y  x x  e) y  x  x  2x2  x  c) y  3x  x  x2  x  f) y  x  x  x Bài Tìm cực trị hàm số sau: 3 x2 2x 1 a) y  x  b) y  d) y  x  x   ln x e) y  x  4sin x c) y  e x  4e  x f) y  x  ln(1  x ) VẤN ĐỀ 2: Tìm điều kiện để hàm số có cực trị Nếu hàm số y = f(x) đạt cực trị điểm x0 f (x0) = x0 đạo hàm Để hàm số y = f(x) đạt cực trị điểm x0 f (x) đổi dấu x qua x0 Chú ý:  Hàm số bậc ba y  ax  bx  cx  d có cực trị  Phương trình y = có hai nghiệm phân biệt Khi x0 điểm cực trị ta tính giá trị cực trị y(x0) hai cách: HTTP://THAYTOAN.NET Trang Đại số lớp 12 GV: Nguyễn Văn Huy - 0968 64 65 97 + y( x0 )  ax03  bx02  cx0  d + y ( x0 )  Ax0  B , Ax + B phần dư pheùp chia y cho y ax  bx  c P( x ) = (aa 0) có cực trị  Phương trình y = có hai nghiệm a' x  b' Q( x ) b' phân biệt khác  a' Khi x0 điểm cực trị ta tính giá trị cực trị y(x0) hai cách: P ( x0 ) P '( x0 ) y ( x0 )  hoaëc y( x0 )  Q( x0 ) Q '( x0 )  Hàm số y   Khi sử dụng điều kiện cần để xét hàm số có cực trị cần phải kiểm tra lại để loại bỏ nghiệm ngoại lai  Khi giải tập loại thường ta sử dụng kiến thức khác nữa, định lí Vi–et Bài Chứng minh hàm số sau có cực đại, cực tiểu: a) y  x  3mx  3(m  1) x  m3 c) y  x  m(m2  1) x  m  xm b) y  x  3(2 m  1) x  m(m  1) x  d) y  x  mx  m  x  m 1 Bài Tìm m để hàm số: a) y  (m  2) x  x  mx  có cực đại, cực tiểu b) y  x  3(m  1) x  (2m2  3m  2) x  m(m  1) có cực đại, cực tiểu c) y  x  3mx  (m  1) x  đạt cực đại x = d) y   mx  2(m  2) x  m  có cực đại x  x  2mx  e) y  đạt cực tiểu x = xm x  (m  1) x  m  4m  f) y  có cực đại, cực tiểu x 1 x2  x  m g) y  có giá trị cực đại x 1 Bài Tìm m để hàm số sau cực trị: a) y  x  x  3mx  3m  c) y   x  mx  x 3 b) y  mx  3mx  (m  1) x  d) y  x  (m  1) x  m  4m  x 1 Bài Tìm a, b, c, d để hàm soá: a) y  ax  bx  cx  d đạt cực tiểu x = đạt cực đại x = 27 b) y  ax  bx  c có đồ thị qua gốc toạ độ O đạt cực trị –9 x = Trang HTTP://THAYTOAN.NET GV: Nguyễn Văn Huy – 0968 64 65 97 Đại số lớp 12 x  bx  c đạt cực trị –6 taïi x = –1 x 1 ax  bx  ab d) y  đạt cực trị x = vaø x = bx  a c) y  e) y  ax  x  b đạt cực đại x = x2 1 Bài Tìm m để hàm số : a) y  x  2(m  1) x  (m  m  1) x  2(m2  1) đạt cực trị hai ñieåm x1, x2 cho: 1   (x  x ) x1 x2 2 x  mx  mx  đạt cực trị hai điểm x1, x2 cho: x1  x2  1 c) y  mx  (m  1) x  3(m  2) x  đạt cực trị hai điểm x1, x2 cho: x1  x2  3 b) y  Baøi Tìm m để đồ thị hàm số : a) y   x  mx  coù hai điểm cực trị A, B AB  900m 729 b) y  x  mx  x  m coù điểm cực trị A, B, C tam giác ABC nhận gốc toạ độ O làm trọng tâm Bài Tìm m để đồ thị hàm số : a) y  x  mx  12 x  13 có hai điểm cực trị cách truïc tung b) y  x  3mx  4m có điểm cực đại, cực tiểu đối xứng qua đường phân giác thứ c) y  x  3mx  4m có điểm cực đại, cực tiểu phía đường thẳng (d): 3x  y   VẤN ĐỀ 3: Đường thẳng qua hai điểm cực trị 1) Hàm số bậc ba y  f ( x )  ax  bx  cx  d  Chia f(x) cho f (x) ta được: f(x) = Q(x).f (x) + Ax + B  Khi đó, giả sử (x1; y1), (x2; y2) điểm cực trị thì:  y1  f ( x1 )  Ax1  B  y  f ( x )  Ax  B  2  Các điểm (x1; y1), (x2; y2) nằm đường thẳng y = Ax + B P( x ) ax  bx  c 2) Hàm số phân thức y  f ( x )   Q( x ) dx  e P '( x0 )  Giả sử (x0; y0) điểm cực trị y0  Q '( x0 )  Giả sử hàm số có cực đại cực tiểu phương trình đường thẳng qua hai điểm cực trị HTTP://THAYTOAN.NET Trang Đại số lớp 12 GV: Nguyễn Văn Huy - 0968 64 65 97 y aáy laø: P '( x ) 2ax  b  Q '( x ) d Bài Viết phương trình đường thẳng qua hai điểm cực trị đồ thị hàm số : a) y  x  x  x  b) y  x  x x2  x  d) y  x 3 c) y  x  x  x  x2  x  e y x 2 Bài Khi hàm số có cực đại, cực tiểu, viết phương trình đường thẳng qua hai điểm cực trị đồ thị hàm số: 2 a) y  x  3mx  3(m  1) x  m c) y  x  3(m  1) x  (2m  3m  2) x  m(m  1) x  mx  b) y  xm x  mx  m  d) y  x  m 1 Bài Tìm m để hàm số: a) y  x  3(m  1) x  6(m  2) x  coù đường thẳng qua hai điểm cực trị song song với đường thẳng y = –4x + b) y  x  3(m  1) x  6m(1  2m ) x có điểm cực đại, cực tiểu đồ thị nằm đường thẳng y = –4x c) y  x  mx  x  có đường thẳng qua điểm cực đại, cực tiểu vuông góc với đường thẳng y = 3x – d) y  x  x  m x  m có điểm cực đại cực tiểu đối xứng qua đường thẳng (): y  x 2 III GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ Định nghóa: Giả sử hàm số f xác định miền D (D  R)  f ( x )  M , x  D a) M  max f ( x )   D  x  D : f ( x )  M  f ( x )  m, x  D b) m  f ( x )   D x  D : f ( x0 )  m Tính chất: a) Nếu hàm số f đồng biến [a; b] max f ( x )  f (b), f ( x )  f (a) [ a;b ] [ a;b ] b) Neáu hàm số f nghịch biến [a; b] max f ( x )  f (a), f ( x )  f (b) [ a;b ] [ a;b ] VẤN ĐỀ 1: Tìm GTLN, GTNN hàm số cách lập bảng biến thiên Cách 1: Thường dùng tìm GTLN, GTNN hàm số khoảng Trang HTTP://THAYTOAN.NET GV: Nguyễn Văn Huy – 0968 64 65 97 Đại số lớp 12  Tính f (x)  Xét dấu f (x) lập bảng biến thiên  Dựa vào bảng biến thiên để kết luận Cách 2: Thường dùng tìm GTLN, GTNN hàm số liên tục đoạn [a; b]  Tính f (x)  Giải phương trình f (x) = tìm nghiệm x1, x2, …, xn [a; b] (nếu có)  Tính f(a), f(b), f(x1), f(x2), …, f(xn)  So sánh giá trị vừa tính kết luận M  max f ( x )  max  f (a), f (b), f ( x1 ), f ( x2 ), , f ( xn ) [a ; b ] m  f ( x )   f (a), f (b), f ( x1 ), f ( x2 ), , f ( xn ) [ a; b ] Bài Tìm GTLN, GTNN hàm số sau: a) y  x  x  b) y  x  x d) y  x  x  e) y  x 1 x2  2x  x2  x  1 ( x  0) h) y  x x2  x  Bài Tìm GTLN, GTNN hàm soá sau: g) y  x  c) y  x  x  f) y  i) y  x2  x  x2  x4  x2  x3  x a) y  x  x  12 x  treân [–1; 5] b) y  x  x treân [–2; 3] c) y  x  x  treân [–3; 2] ( x  0) d) y  x  x  treân [–2; 2] e) y  3x  treân [0; 2] x 3 f) y  x  7x  g) y  treân [0; 2] x2 h) y  x 1 treân [0; 4] x 1 1 x  x2 1 x  x2 treân [0; 1] i) y  100  x treân [–6; 8] k) y   x   x Bài Tìm GTLN, GTNN hàm số sau: 2sin x  a) y  b) y  c) y  2sin x  cos x  sin x  cos x  cos x  d) y  cos x  2sin x  e) y  sin3 x  cos3 x g) y  x  x   x  x  f) y  x2  x  x2  h) y   x  x  x  x  IV ĐIỂM UỐN CỦA ĐỒ THỊ Định nghóa: Điểm U  x ; f ( x )  đgl điểm uốn đồ thị hàm số y = f(x) tồn khoảng (a; b) chứa điểm x0 cho hai khoảng (a; x0) (x0; b) tiếp tuyến đồ thị điểm U nằm phía đồ thị khoảng tiếp tuyến nằm phía đồ thị Tính chất: HTTP://THAYTOAN.NET Trang Đại số lớp 12 GV: Nguyễn Văn Huy - 0968 64 65 97  Nếu hàm số y = f(x) có đạo hàm cấp hai khoảng chứa điểm x0, f(x0) = f(x) đổi dấu x qua x0 U  x ; f ( x )  điểm uốn đồ thị hàm số  Đồ thị hàm số bậc ba y  ax  bx  cx  d (a  0) có điểm uốn tâm đối xứng đồ thị Bài Tìm điểm uốn đồ thị hàm số sau: a) y  x  x  x  b) y  x  x  x  c) y  x  x  x4 d) y   2x2  e) y  x  12 x  48 x  10 f) y  x  x  x  Baøi Tìm m, n để đồ thị hàm số sau có điểm uốn ra: x3  (m  1) x  (m  3) x  ; I(1; 3) 3 2  d) y  x  mx  nx  ; I  ; 3  3  a) y  x  x  3mx  3m  ; I(1; 2) b) y   c) y  mx  nx  ; I(1; 4) x3  3mx  ; I(1; 0) f) y  mx  3mx  ; I(–1; 2) m Bài Tìm m để đồ thị hàm số sau có điểm uoán: e) y   x5 4 x  mx   x  (4m  3) x  5x  b) y  x2  Bài Chứng minh đồ thị hàm số sau có điểm uốn thẳng haøng: a) y  a) y  d) y  g) y  2x 1 b) y  x2  x  2x 1 e) y  x2  x  3x h) y  x 1 c) y  x2  x f) y  x2  x  3x x  3x x2  x2  2x  x2  x  i) y  x2  3x  x2 1 Bài Tìm m, n để đồ thị hàm số: x3 x2  4x  a) y  x  x  x  mx  m  có hai điểm uốn thẳng hàng với điểm A(1; –2) x3  x  mx  có điểm uốn đường thẳng y  x  3 c) y   x  mx  n coù điểm uốn Ox b) y   V ĐƯỜNG TIỆM CẬN CỦA ĐỒ THỊ Định nghóa:  Đường thẳng x  x0 đgl đường tiệm cận đứng đồ thị hàm số y  f ( x ) điều kiện sau thoả mãn: lim  f ( x )   ; lim  f ( x )   ; x  x0 x  x0 lim f ( x )   ; x  x0  lim f ( x )   x  x0   Đường thẳng y  y0 đgl đường tiệm cận ngang đồ thị hàm số y  f ( x ) Trang 10 HTTP://THAYTOAN.NET Đại số lớp 12  Jn   GV: Nguyễn Vaên Huy - 0968 64 65 97 x n sin x.dx n   Đặt u  x dv  sin x.dx n    Đặt u  x x dv  e dx  e) I n  x n e x dx e n   Đặt u  ln x dv  dx f) I n   ln n x.dx 1 g) I n   (1  x )n dx  Đặt x  cos t 2n  Đặt u  sin t dv  sin t.dt  h) I n   dx (1  x )n  Phân tích (1  x )n x2 Tính J n   (1  i) I n   x n  x dx  k) I n   dx n cos x dx  x )n  x2  (1  x )n x2 (1  x )n u  x  x Đặt  dv  dx  (1  x )n  dx n    Ñaët u  x dv   x dx   Phân tích n cos x  cos x cos n 1 x  Đặt t  cosn1 x III ỨNG DỤNG TÍCH PHÂN Diện tích hình phẳng  Diện tích S hình phẳng giới hạn đường: – Đồ thị (C) hàm số y = f(x) liên tục đoạn [a; b] – Trục hoành – Hai đường thẳng x = a, x = b b laø: S   f ( x ) dx (1) a  Diện tích S hình phẳng giới hạn đường: – Đồ thị hàm số y = f(x), y = g(x) liên tục đoạn [a; b] – Hai đường thẳng x = a, x = b b laø: S   f ( x )  g( x ) dx (2) a Chú ý: b  Nếu đoạn [a; b], hàm số f(x) không đổi dấu thì:  a b f ( x ) dx   f ( x )dx a  Trong công thức tính diện tích trên, cần khử dấu giá trị tuyệt đối hàm số dấu Trang 76 HTTP://THAYTOAN.NET GV: Nguyễn Văn Huy – 0968 64 65 97 Đại số lớp 12 tích phân Ta làm sau: Bước 1: Giải phương trình: f(x) = f(x) – g(x) = đoạn [a; b] Giả sử tìm nghiệm c, d (c < d) Bước 2: Sử dụng công thức phân đoạn: b  c d b f ( x ) dx   f ( x ) dx   f ( x ) dx   f ( x ) dx a a c c =  d d f ( x )dx  a  b f ( x )dx  c  f ( x )dx d (vì đoạn [a; c], [c; d], [d; b] hàm số f(x) không đổi dấu)  Diện tích S hình phẳng giới hạn đường: – Đồ thị x = g(y), x = h(y) (g h hai hàm số liên tục đoạn [c; d]) – Hai đường thẳng x = c, x = d d S   g( y )  h( y ) dy c Thể tích vật thể  Gọi B phần vật thể giới hạn hai mặt phẳng vuông góc với trục Ox điểm điểm a b S(x) diện tích thiết diện vật thể bị cắt mặt phẳng vuông góc với trục Ox điểm có hoành độ x (a  x  b) Giả sử S(x) liên tục đoạn [a; b] b V   S ( x )dx Thể tích B là: a  Thể tích khối tròn xoay: Thể tích khối tròn xoay hình phẳng giới hạn đường: (C): y = f(x), trục hoành, x = a, x = b (a < b) sinh quay quanh truïc Ox: b V    f ( x )dx a Chú ý: Thể tích khối tròn xoay sinh hình phẳng giới hạn đường sau quay xung quanh trục Oy: (C): x = g(y), truïc tung, y = c, y = d d V    g2 ( y )dy là: c VẤN ĐỀ 1: Tính diện tích hình phẳng Bài 25 Tính diện tích hình phẳng giới hạn đường sau: a) y  x  x  6, y  0, x  2, x  c) y   ln x , y  0, x  1, x  e x e) y  ln x , y  0, x  , x  e e HTTP://THAYTOAN.NET b) y  d) y  ln x , y  0, x  , x  e x e ln x x , y  0, x  e, x  f) y  x , y  0, x  2, x  Trang 77 Đại số lớp 12 g) y  x GV: Nguyễn Văn Huy - 0968 64 65 97 , y  0, x  0, x  h) y  lg x , y  0, x  , x  10 10 1 x4 Baøi 26 Tính diện tích hình phẳng giới hạn đường sau: 3 x  a) y  , y  0, x  b) y  x , y   x , y  x 1 c) y  e x , y  2, x  d) y  x , x  y   0, y  e) y  x , y  x  x  1, y  f) y  x  x  5, y  2 x  4, y  x  11 g) y  x , y  x2 27 ,y 27 x h) y  x , y  x  x  4, y  i) y  x , x  y   0, y  k) y   x  x  5, y   x  x  3, y  x  15 Baøi 27 Tính diện tích hình phẳng giới hạn đường sau: a) y  x , y  , y  0, x  e b) y  sin x  cos x , y  3, x  0, x   x c) y  x 2 , y  0, y   x , x  d) y  x  x , y  x  x  6, x  0, x  e) y  x, y  0, y   x f) y  x  x  2, y  x  x  5, y  g) y  x , y   x , y  h) y  a) y   x , y  x  x b) y  x  x  , y  x  2 x , y  e x , x  e Bài 28 Tính diện tích hình phẳng giới hạn đường sau: c) y  x , y   x2  d) y  1  x2 ,y  x2 e) y  x , y   x f) y  x  x , y   x  x x2 g) y  ,y 1 x2 h) y  x   , y  x i) y  x  x , y  x  k) y  x  2, y   x Bài 29 Tính diện tích hình phẳng giới hạn đường sau: a) y  x , x   y b) y  x   0, x  y   c) y  y  x  0, x  y  d) y  x  1, y  x  e) y  x , y  x , y  0, y  f) y  ( x  1)2 , x  sin y g) y  x , x  y  16 h) y  (4  x )3 , y  x i) x  y   0, x  y   k) x  y  8, y  x Bài 30 Tính diện tích hình phẳng giới hạn đường sau: a) y  x.e x ; y  0; x  1; x  b) y  x.ln x; y  0; x  1; x  e c) y  e x ; y  e x ; x  d) y  x 2 ; y  0; x  0; y   x e) y  ( x  1)5 ; y  e x ; x  1 f) y  ln x , y  0, x  , x  e e g) y  sin x  cos2 x , y  0, x  0, x   h) y  x  sin x; y  x; x  0; x  2 i) y  x  sin x; y  ; x  0; x   k) y  sin x  sin x  1, y  0, x  0, x   Bài 31 Tính diện tích hình phẳng giới hạn đường sau: Trang 78 HTTP://THAYTOAN.NET GV: Nguyễn Văn Huy – 0968 64 65 97 a) (C ) : y  x  Đại số lớp 12 , tiệm cận xiên (C), x = vaø x = x2 x2  x  b) (C ) : y  , y  , tiệm cận xiên (C), x = –1 vaø x = x2 c) (C ) : y  x  x  x  3, y  tiếp tuyến với (C) điểm có hoành độ x = d) (C ) : y  x  x  2, x  1 tiếp tuyến cới (C) điểm có hoành độ x = –2 e) (C ) : y  x  x tiếp tuyến với (C) O(0 ; 0) A(3; 3) (C) VẤN ĐỀ 2: Tính thể tích vật thể Bài Tính thể tích vật thể tròn xoay sinh hình (H) giới hạn đường sau quay quanh trục Ox:  a) y  sin x , y  0, x  0, x  b) y  x  x , y  0, x  0, x   c) y  sin x  cos6 x , y  0, x  0, x  d) y  x , x  e) y  x  1, y  0, x  1, x  g) y  x2 x3 ,y f) y  x , y  x h) y   x  x , y  x  i) y  sin x , y  cos x , x    ,x k) ( x  2)2  y  9, y  l) y  x  x  6, y   x  x  m) y  ln x, y  0, x  Bài Tính thể tích vật thể tròn xoay sinh hình (H) giới hạn đường sau quay quanh trục Oy: a) x  , y  1, y  b) y  x , y  y c) y  e x , x  0, y  e d) y  x , y  1, y  Bài Tính thể tích vật thể tròn xoay sinh hình (H) giới hạn đường sau quay quanh: i) truïc Ox ii) truïc Oy a) y  ( x  2)2 , y  c) y  , y  0, x  0, x  x 1 e) y  x.ln x, y  0, x  1, x  e b) y  x , y  x , y  d) y  x  x , y  f) y  x ( x  0), y  3 x  10, y  g) y  x , y  x h)  x –   y  1  x2 y2 i)  1 k) y  x  1, y  2, y  0, x  l) x  y  0, y  2, x  m) y  x , y  0, x  IV ÔN TẬP TÍCH PHÂN Bài Tính tích phân sau: HTTP://THAYTOAN.NET Trang 79 Đại số lớp 12 GV: Nguyễn Văn Huy - 0968 64 65 97  x  x dx a) b) d) k) x  x l) dx f) i) 1 x  x  2x  5x  x3  x2  x   x2  xdx 1 dx  dx    x  dx  ( x   x  )dx h) x2  3 ( x  1) 1 x  2x e) xdx   c) dx  x 1    x   dx  1  g) x7 m) x2 dx xdx  ( x  1) Bài Tính tích phân sau: a)  1 d) x x 1 x5  2x3  x2  b) dx dx e)   2 x  2x o)  x x p)  x dx x2  x 1 7/3 q) 3 ( x  1)2 s)  x 1  x  x 1  10 dx x 3  0  x dx m) x  1x dx  dx 1 x5  i) l)  x x  dx  1  x x 3dx x4 xdx  f) x54 h) 2 dx 1 r) c)  x  x dx g)  x  x dx k)  x  x dx 3x  dx dx dx t)  x  x dx x  x 1 Bài Tính tích phân sau:  /4 a)  /2 d) e) cos x  4sin x l) /2 r)  /2 tan x   sin 2004 x sin 2004 x  cos2004 x f)  cos3 x dx sin x  p)   dx i) cos5 xdx  cos /2  /4 sin x dx  cos x q)  /3 sin xdx x sin x  cos x cos 2 x sin x  m) /2 s)  cos2 x  sin x dx cos x  /2 dx sin x cos x dx  cos x /3 /2 x tan x dx /2    sin x sin x sin x dx /4 cos x   3cos x /2 c) dx cos x (sin x  cos4 x )dx h) /4 o) sin x  sin x /2 dx k)   b) sin x  /2 g) /2  2sin x dx  sin x t)  x dx sin x dx  cos x  sin x dx  sin x x sin xdx sin x cos2 x Bài Tính tích phân sau: Trang 80 HTTP://THAYTOAN.NET GV: Nguyễn Văn Huy – 0968 64 65 97 a)  x ln( x  5)dx  e (esin x  cos x ) cos x dx e) x 1 ln xdx x ( x  2)  l) dx   (4 x e p)   ln x x  ln x f)  x ln x dx 3 1 i) 2x e dx s)  dx  1 e  x  1)e dx m)  e3 x sin x dx e  2e x 0 r) ln3 e x x 2e x /2 o) dx  h)  ( x  1)e x dx   e k) c)  ( x  2)e2 x dx ln g) b)  ln( x  x)dx /2 d) Đại số lớp 12 ln(1  x ) x2 ln x x2 x dx q)  x ln(1  x )dx dx  ln x ln x dx x e3 t)  ln2 x x ln x  dx Bài Tính diện tích hình phẳng giới hạn đường sau: , y  0, x  2, x  2 x a) y  x  x  1, y  0, x  0, x  1 b) y  c) y   x  x  , y  4 1 e) y  x   , y  0, x  2, x  x 1 d) y  e x , y  2, x  f) y  x  x , y   x  x x2  x 2x 1 , y  0, x  h) y  , y0 x 1 x 1 x  3x  m) y  , tiệm cận xiên, x  0, x  x 1 g) y  x2  x  n) y  , y  0, tiếp tuyến vẽ từ gốc toạ độ x 1 o) y  x  x  x  , tiếp tuyến giao điểm (C) với trục tung x  x , tiếp tuyến điểm M thuộc đồ thị có hoành độ x = Bài Tính thể tích vật thể tròn xoay sinh quay hình phẳng giới hạn đường sau quanh trục: p) y  a) y  x , y  0, x  3; Ox b) y  x ln x , y  0, x  1, x  e; Ox c) y  xe x , y  0, x  1; Ox d) y   x , y  x  2; Ox e) y   x , x  0; Oy f) x  ye y , x  0, y  1; Oy CHƯƠNG IV I SỐ PHỨC HTTP://THAYTOAN.NET Trang 81 Đại số lớp 12 GV: Nguyễn Văn Huy - 0968 64 65 97 Khái niệm số phức  Tập hợp số phức: C  Số phức (dạng đại soá) : z  a  bi (a, b  R , a phần thực, b phần ảo, i đơn vị ảo, i2 = –1)  z số thực  phần ảo z (b = 0) z ảo  phần thực z (a = 0) Số vừa số thực vừa số ảo a  a '  Hai số phức nhau: a  bi  a’  b’i   (a, b, a ', b '  R ) b  b ' Biểu diễn hình học: Số phức z = a + bi (a, b R) biểu diễn điểm M(a; b) hay  u  (a; b) mp(Oxy) (mp phức) Cộng trừ số phức:   a  bi    a’  b’i    a  a’   b  b’ i   a  bi    a’  b’i    a  a’   b  b’ i  Số đối z = a + bi laø –z = –a – bi        u biểu diễn z, u ' biểu diễn z' u  u ' biểu diễn z + z’ u  u ' biểu diễn z – z’ Nhân hai số phức :    a  bi  a ' b ' i    aa’– bb’   ab’  ba’ i  k (a  bi )  ka  kbi (k  R) Số phức liên hợp số phức z = a + bi z  a  bi z  z  z  z ; z  z '  z  z ' ; z.z '  z.z ';    ;  z2  z2  z số thực  z  z ; z số ảo  z   z z.z  a2  b2 Môđun số phức : z = a + bi    z  a2  b2  zz  OM  z  0, z  C , z 0 z0  z.z '  z z '  Chia hai số phức:  z 1  z (z  0) z Căn bậc hai số phức: z z  z' z'   z  z'  z  z'  z  z' z' z '.z z '.z  z ' z 1   z z.z z  z'  w  z '  wz z   z  x  yi bậc hai số phức w  a  bi  z2  w   x  y  a  xy  b  w = có bậc hai z =  w  có hai bậc hai đối  Hai bậc hai a >  a  Hai bậc hai a <   a i Trang 82 HTTP://THAYTOAN.NET GV: Nguyễn Văn Huy – 0968 64 65 97 Đại số lớp 12 Phương trình baäc hai Az2 + Bz + C = (*) (A, B, C số phức cho trước, A  )   B  AC B   , (  bậc hai cuûa ) 2A B    : (*) có nghiệm kép: z1  z2   2A Chú ý: Nếu z0  C nghiệm (*) z0 nghiệm (*)    : (*) có hai nghiệm phân biệt z1,2  10 Dạng lượng giác số phức:  z  r (cos   i sin ) (r > 0) dạng lương giác z = a + bi (z  0)  r  a2  b2  a   cos   r  b sin     r   acgumen z,   (Ox, OM )  z   z  cos   i sin  (  R ) 11 Nhaân, chia số phức dạng lượng giác Cho z  r (cos   i sin ) , z '  r '(cos  ' i sin  ') :  z.z '  rr '. cos(   ')  i sin(   ')  z r   cos(   ')  i sin(   ') z' r ' 12 Công thức Moa–vrơ: n   r (cos   i sin )  r n (cos n  i sin n) , ( n  N*) n   cos   i sin    cos n  i sin n 13 Caên bậc hai số phức dạng lượng giác:  Số phức z  r (cos   i sin  ) (r > 0) có hai bậc hai là:     r  cos  i sin   2         vaø  r  cos  i sin   r  cos      i sin       2  2   2  Mở rộng: Số phức z  r (cos   i sin  ) (r > 0) có n bậc n là:  n    k 2   k 2 r  cos  i sin n n    , k  0,1, , n   VAÁN ĐỀ 1: Thực phép toán cộng – trừ – nhân – chia Áp dụng quy tắc cộng, trừ, nhân, chia hai số phức, bậc hai số phức Chú ý tính chất giao hoán, kết hợp phép toán cộng nhân Bài 32 Tìm phần thực phần ảo số phức sau: a) (4 – i)  (2  3i) –(5  i) HTTP://THAYTOAN.NET 1  b)  i    2i  3  2  c)   3i     i  3  Trang 83 Đại số lớp 12 GV: Nguyễn Văn Huy - 0968 64 65 97   3      d)   i      2i   i e)   i      i      4    3 i i g)  h) 1 i i  2i ai a m k) l) i m ai a ai b 1 i o) p) 2i i a Bài 33 Thực phép toaùn sau: a) (1  i )2  (1 – i )2 1  d)   3i  2  b) (2  i )3  (3  i )3 e) (1  2i )  (1  i ) (3  2i )  (2  i ) f) (2  3i)(3  i ) i) 1 i 1 i m) 3 i (1  2i )(1  i ) q)  3i  5i c) (3  4i )2 f) (2  i )6 g) (1  i )3  (2i )3 h) (1  i)100 i) (3  3i)5 Bài 34 Cho số phức z  x  yi Tìm phần thực phần ảo số phức sau: z i iz  Bài 35 Phân tích thành nhân tử, với a, b, c  R: a) z2  z  4i b) a) a2  b) a2  c) 4a  9b2 d) 3a2  5b g) a3  h) a  a2  b)  5i c) 1  6i d) 5  12i f)  24i g) 40  42i h) 11  3.i k) 5  12i l)  6i m) 33  56i e) a  16 f) a3  27 Bài 36 Tìm bậc hai số phức: a) 1  3i e)   i 2 i)  i VẤN ĐỀ 2: Giải phương trình tập số phức Giả sử z = x + yi Giải phương trình ẩn z tìm x, y thoả mãn phương trình Bài Giải phương trình sau (ẩn z): a) z  z  b) z  z  c) z  z   4i e) z  z  1  8i d) z  z  f) (4  5i)z   i 2i   3i z 1 i 2i  zi g)   1  zi h) i) z  3z   12i k) (3  2i )2 ( z  i )  3i  1 l)  (2  i ) z   i   iz    2i     m) z   i    i   o)  5i   4i z q) ( z2  9)( z2  z  1)  Trang 84 p) ( z  3i )( z2  z  5)  r) z3  3z2  5z  3i   HTTP://THAYTOAN.NET GV: Nguyễn Văn Huy – 0968 64 65 97 Đại số lớp 12 Bài Giải phương trình sau (ẩn x): a) x  3.x   b) x  3.x   c) x  (3  i) x   3i  e) 3x  x   g) 3x  24  d) 3i.x  x   i  f) i.x  2i.x   h) x  16  i) ( x  2)5   k) x   l) x  2(1  i) x   2i  m) x  2(2  i) x  18  4i  o) ix  x   i  p) x  (2  3i ) x  Bài Tìm hai số biết tổng tích chúng là: a)  3i vaø   3i b) 2i   4i Bài Tìm phương trình bậc hai với hệ số thực nhận  làm nghiệm: a)    4i b)    i d)   2  i c)    5i e)    i f)   i 5i g)   (2  i )(3  i ) h)   i 51  2i 80  3i 45  4i 38 i)   2i Bài Tìm tham số m để phương trình sau có hai nghiệm z1, z2 thoả mãn điều kiện ra: 2 a) z2  mz  m   0, ñk : z1  z2  z1z2  3 b) z2  3mz  5i  0, ñk : z1  z2  18 2 c) x  mx  3i  0, ñk : z1  z2  Baøi Cho z1 , z2 hai nghiệm phương trình 1  i  z2  (3  2i )z   i  Tính giá trị biểu thức sau: 2 a) A  z1  z2 2 b) B  z1 z2  z1z2 c) C  z1 z2  z2 z1 Baøi Giải hệ phương trình sau:  z1  z   i a)  2  z1  z   2i  z1 z  5  5.i b)  2  z1  z  5  2.i  z13  z2   c)   z1 ( z2 )    z1  z2  z3   d)  z1  z2  z3   z z z    z  12  z  8i   e)   z 4 1  z 8   z  2i  z  h)   z  i  z 1   z 1  z i 1  f)   z  3i   z i    i) z1  z2  4z1z2  z1  z2  2i  z2  z2   2i  g)  z1  z2   i  Bài Giải hệ phương trình sau: x  y   i  x  y   2i a)  b)  2 x  y   i  x  y   8i 1 1  x  y2  6     i  d)  x y 2 e)  1  x  y2   2i x  y    x  y   i g)  2  x  y   2i HTTP://THAYTOAN.NET x  y  c)   xy   4i  x  y   2i  f)  1 17    i  x y 26 26  x  y  h)  3  x  y  2  3i Trang 85 Đại số lớp 12 GV: Nguyễn Văn Huy - 0968 64 65 97 VẤN ĐỀ 3: Tập hợp điểm Giả sử số phức z = x + yi biểu diển điểm M(x; y) Tìm tập hợp điểm M tìm hệ thức x y Bài Xác định tập hợp điểm M mặt phẳng phức biểu diễn số z thỏa mãn điều kiện sau: a) z  z   b) z  z   i  c) z  z  2i  z  i d) 2i.z   z  e) 2i  z  z  f) z   g) z  i  z   3i h) k)  z  i  z l) z   z  3i 1 zi i) z   i  m)  z  i  Bài Xác định tập hợp điểm M mặt phẳng phức biểu diễn số z thỏa mãn điều kiện sau: a) z  2i số thực b) z   i số ảo c) z.z  VẤN ĐỀ 4: Dạng lượng giác số phức Sử dụng phép toán số phức dạng lượng giác Bài Tìm acgumen số phức sau: a)   3.i b) – 4i     d) cos  i.sin e)  sin  i cos 4 8 Bài Thực phép tính sau: a)  cos 20o  i sin 20o  cos 25o  i sin 25o  c)  cos120o  i sin120o  cos 45o  i sin 45o  e) g)  cos18o  i sin18o  cos 72o  i sin 72o  (cos 45  i sin 45 ) (cos15  i sin 15 ) c)  3.i f) (1  i )(1  i )       b)  cos  i.sin   cos  i.sin   6  4       d)  cos  i sin   cos  i sin  6  4    cos85  i sin 85 f) cos 40  i sin 40 2(cos 45  i sin 45 ) h) 3(cos15  i sin15 ) 2 2  2 2   cos  i sin  i sin )  3   3 i) k)      2(cos  i sin )  cos  i sin  2 2  Bài Viết dạng lượng giác số phức sau: a)  i b)  i c) (1  i )(1  i ) d) 2.i.(  i) (cos 1 i 1 i f)  2i i)  i k) i e) g) sin   i cos  h) l)  0i m) tan i 5 i Bài Viết dạng đại số số phức sau: Trang 86 HTTP://THAYTOAN.NET GV: Nguyễn Văn Huy – 0968 64 65 97 Đại số lớp 12    b)  cos  i sin  6  3i e) (1  i)(1  2i) a) cos 45o  i sin 45o d) (2  i)6 1 i g) 2i  h)  1  i   3 3  k)  i sin  cos  4  2 1 i  l)    1 i  100 c)  cos120o  i sin120o  f) i 1 i  i) (2  2i )    1 i  60 40     cos  i sin  m)  4 17   i Bài Tính: a)  cos12o  i sin12o  d)   cos30  i sin 30     16 b) 1  i  21   3i   g)    2i      k) (cos  i sin )i 5.(1  3i )7 3 c) (  i ) e) (cos15o  i sin15o )5 f) (1  i)2008  (1  i)2008 12 2008 1   i  1  i 3 h)  i)     i  2  1 l) z2008  , bieát z   z z2008 Bài Chứng minh: a) sin 5t  16sin5 t  20sin3 t  5sin t b) cos 5t  16 cos5 t  20 cos3 t  cos t c) sin 3t  cos2 t  sin3 t d) cos 3t  cos3 t  cos t II OÂN TẬP SỐ PHỨC Bài Thực phép tính sau:  1  i    i  b)         a) (2  i )(3  2i )(5  4i ) 16 1 i  1 i  c)      1 i  1 i  d)  7i  8i   3i  3i e) (2  4i)(5  2i)  (3  4i )(6  i ) f)  i  i2  i3   i 2009 g) i 2000  i1999  i 201  i82  i 47 h)  i  i   i n , (n  1) i) i.i i i 2000 k) i 5 (i )7  (i)13  i 100  (i)94 Bài Cho số phức z1   2i, z2  2  3i, z3   i Tính: a) z1  z2  z3 b) z1z2  z2 z3  z3 z1 d) z12  z2  z32 e) z1 z2 z3   z2 z3 z1 c) z1z2 z3 f) z12  z2 z22  z32 Bài Rút gọn biểu thức sau: a) A  z4  iz3  (1  2i )z2  3z   3i, với z   3i b) B  (z  z2  z3 )(2  z  z2 ), với z  HTTP://THAYTOAN.NET 1  i Trang 87 Đại số lớp 12 GV: Nguyễn Văn Huy - 0968 64 65 97 Bài Tìm số thực x, y cho: a) (1  2i) x  (1  y)i   i b) x 3 y 3  i 3i 3i x  (3 xy  y )i Bài Tìm bậc hai số phức sau: a)  6i b)  4i c)  i c) (4  3i ) x  (3  2i ) xy  y  1 i  e)    1 i  i) 1 i  f)    i    i k)  2  i 2 g) l) 2 1  i  i 1 i 2 Baøi Tìm bậc ba số phức sau: a) i b) –27 c)  2i Baøi Tìm bậc bốn số phức sau: a)  i 12 b)  i Bài Giải phương trình sau: a) z3  125  c) 2i b) z  16  d)  24i h) i, –i m) 1  1 i 1 i d) 18  6i d) 7  24i c) z3  64i  d) z3  27i  e) z7  2iz4  iz3   f) z6  iz3  i   g) z10  (2  i )z5  2i  Baøi Gọi u1; u2 hai bậc hai z1   4i v1; v2 hai bậc hai z2   4i Tính u1  u2  v1  v2 ? Baøi 10 Giải phương trình sau tập số phức: a) z2   b) z2  z   c) z2  z  10  d) z2  5z   e) 2 z2  3z   f) 3z2  z   g) ( z  z )( z  z )  h) z2  z   i) z2  z  k) z  z   3i l)  z  2i  +2  z  2i    m) z3  z 2 n) 4z2  z  o) iz2  (1  2i )z   Bài 11 Giải phương trình sau tập số phức: p) (1  i )z2   11i   4z  i  4z  i a)  6   5 zi  zi  b)  z  5i  z    z2  z    c)  z2  z    z2  z   16  d) z3  1  i  z2    i  z  3i  e)  z  i   z2   z     f) z2  2iz  2i   g) z2  (5  14i )z  2(12  5i)  h) z2  80 z  4099  100i  i) ( z   i)2  6( z   i )  13  k) z2  (cos   i sin )z  i cos  sin   Bài 12 Giải phương trình sau tập số phức: a) x  (3  4i) x  5i   b) x  (1  i ) x   i  c) x  x   d) x  x   e) x   Bài 13 Giải phương trình sau biết chúng có nghiệm aûo: a) z3  iz2  2iz   b) z3  (i  3)z2  (4  4i )z   4i  Baøi 14 Tìm m để phương trình sau:  z  i   z2  2mz  m  2m   Trang 88 HTTP://THAYTOAN.NET GV: Nguyễn Văn Huy – 0968 64 65 97 a) Chỉ có nghiệm phức c) Có ba nghiệm phức Đại số lớp 12 b) Chỉ có nghiệm thực Bài 15 Tìm m để phương trình sau: z3  (3  i )z2  3z  (m  i )  có nghiệm thực Bài 16 Tìm tất số phức z cho ( z  2)( z  i ) số thực Bài 17 Giải phương trình trùng phương: a) z  8(1  i )z2  63  16i  b) z  24(1  i )z2  308  144i  c) z  6(1  i )z2   6i  Baøi 18 Cho z1 , z2 hai nghiệm phương trình: z2  1  i  z   3i  Tính giá trị biểu thức sau: 2 a) z1  z2 2 b) z1 z2  z1z2 3 c) z1  z2 1 1 2 2 3 d) z1     z2    e) z2 z1  z1z2 z  z   z1   z2  z1 z2  z2 z1 f) Baøi 19 Cho z1 , z2 laø hai nghiệm phương trình: x  x   Tính giá trị biểu thức sau: 2016 2016 a) x1  x2 2015 2015 b) x1  x2 Bài 20 Tìm tập hợp điểm mặt phẳng phức biểu diễn số phức thoả mãn hệ thức sau: a) z 3 z i b) z2  z  c) z  Baøi 21 Hãy tính tổng S   z  z2  z3  z n 1 biết z  cos z 2 2  i sin n n Bài 22 Viết dạng lượng giác số phức sau: a) i  i3  i  i  b) (1  i )(2  i) c)     e) 3  cos  i sin   6  g) sin   i(1  cos  ),    Bài 23 Tìm môđun acgumen số phức sau: d)  sin   i cos ,    a) 2  2i  (1  i)6  (1  i)6 b) ( 1  i ) 10  n c) 1  i   1  i  n   2i   i     d)  sin  i cos e) cos  i sin f) 2  3i 8 4   cos  i sin   g)  sin   i cos ,    h) , 0  i)  3i  cos   i sin  Bài 24 Tìm môđun acgumen số phức sau: a) 2  2i  (1  i)6 2  2i  (1  i)6   f) cot   i,      2i 1 i b) ( 1  i ) 10   i    2i   2i  Bài 25 Chứng minh biểu thức sau có giá trị thực: 2 7 a)   i     i  HTTP://THAYTOAN.NET n  n c) 1  i   1  i   19  7i   20  5i  b)       i    6i  n n Trang 89 Đại số lớp 12 GV: Nguyễn Văn Huy - 0968 64 65 97  1  i   1  i  c)         i  i  e)          1  i   1  i  d)         Tìm số phức z có môđun nhỏ Bài 27 Xét điểm A, B, C mặt phẳng phức theo thứ tự biểu diễn số phức sau: Bài 26 Trong số phức z thoả mãn điều kiện z   3i  4i  6i ; (1  i)(1  2i); i 1 3i a) Chứng minh ABC tam giác vuông cân b) Tìm số phức biểu diễn điểm D cho tứ giác ABCD hình vuông Bài 28 Giải phương trình sau, biết chúng có nghiệm ảo: a) z3  (2  2i)z2  (5  4i )z  10i  b) z3  (1  i)z2  (i  1)z  i  c) z3  (4  5i )z2  (8  20i )z  40i  Baøi 29 Cho đa thức P ( z)  z3  (3i  6)z2  (10  18i)z  30i a) Tính P(3i ) b) Giải phương trình P( z)   z 1  Bài 30 Giải phương trình z     , biết z   4i nghiệm phương trình z7  Bài 31 Giải phương trình sau: a) z  z3  z2  z   b) z  z3  z2  z   c) z  1   z3     z2  1   z   d) z  z3  z2  z  15  e) z6  z5  13z  14 z3  13z2  z   Baøi 32 Giải phương trình sau: 2 2 a) ( z  3z  6)  z( z  3z  6)  3z   zi  b)   8  z i  2 c) ( z  z  1)  z ( z  z  1)  5z   zi   zi   zi  d)       1   zi   zi  zi  Lớp Học Thêm Toán Giáo viên: Nguyễn Văn Huy Địa chỉ: 66 – Đặng Đức Thuật – KP6 – Phường Tam Hiệp Biên Hòa – Đồng Nai (cạnh trường THPT Trấn Biên) Điện thoại: 0968 64 65 97 Website: http://thaytoan.net Face: http://facebook.com/hocthemtoan Fanpage: http://facebook.com/hocthemtoan.vn ĐĂNG KÝ HỌC: 0933 619 841 Trang 90 HTTP://THAYTOAN.NET ... N , với số a, b, c lập thành cấp số nhân III HÀM SỐ LUỸ THỪA HÀM SỐ MŨ – HÀM SỐ LOGARIT Trang 40 HTTP://THAYTOAN.NET GV: Nguyễn Văn Huy – 0968 64 65 97 Đại số lớp 12 Khái niệm a) Hàm số luỹ thừa... hàm số: y  (1) (m tham số) x 1 Trang 34 HTTP://THAYTOAN.NET GV: Nguyễn Văn Huy – 0968 64 65 97 Đại số lớp 12 a) Khảo sát biến thiên vẽ đồ thị (C) hàm số (1) ứng với m = –1 b) Tính diện tích. .. x2  x  m  x  2mx  m  Trang 11 Đại số lớp 12 GV: Nguyễn Văn Huy - 0968 64 65 97 Bài Chứng minh tích khoảng cách từ điểm đồ thị hàm số đến hai tiệm cận số: x2  x  x2  5x  a) y  b) y 

Ngày đăng: 21/08/2015, 17:36

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w