1. Trang chủ
  2. » Trung học cơ sở - phổ thông

ĐỀ và đáp án TOÁN KHÔNG CHUYÊN

7 353 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 366,95 KB

Nội dung

TRUNG TÂM DẠY – HỌC THÊM ĐỀ THI THỬ TUYỂN SINH LỚP 10 PHỔ THÔNG NĂNG KHIẾU Năm học 2015 – 2016 Môn thi: TOÁN (Không chuyên) Thời gian làm bài: 120 phút, không kể thời gian phát đề Câu 1. (2 điểm) a. Giải phương trình:     22 2 6 4 4 3 3 1x x x x x x        b.Cho , 0, 1,x y x x y   rút gọn biểu thức 11 2 1 y xy Px xy x xy y x x xy y x x                       Câu 2. (2 điểm) a. Giải hệ phương trình 2 22 3 7 4 22 4 3 11 y xy x y x y xy             b. Cho hình thang cân ABCD có CD là đáy lớn, tam giác DAC vuông tại A và có diện tích là 22 (mét vuông). Biết 3DC AD . Tính chu vi hình thang ABCD và tính diện tích tam giác ABC. Câu 3. (2 điểm) Cho phương trình   2 . 2 1 5 0x x m x m        a. Giải phương trình khi 2m  . b. Tìm m để phương trình   2 2 1 5 0x m x m     có hai nghiệm phân biệt 12 ,xx thỏa 12 xx và 22 12 9 20xx . Câu 4. (1 điểm) Tìm số tự nhiên có ba chữ số, biết rằng tổng của hai chữ số hàng chục và hàng trăm bằng chữ số hàng đơn vị, tích của hai chữ số hàng chục và hàng trăm lớn hơn số hàng đơn vị 7 đơn vị. Câu 5. (3 điểm) Cho hình thang vuông ABCD vuông tại A và D, AB là đáy lớn, 0 45CBA  , 2BC a , 1 tan 2 DCA  . a. Tính BD theo a. b. Tam giác ABD nội tiếp đường tròn (O), AC cắt (O) tại E (E khác A). Tính CE theo a. c. Kẻ EL là đường cao trong tam giác DEB (L thuộc DB). EL cắt AB tại F, cắt (O) tại M. Tính bán kính đường tròn ngoại tiếp tam giác BMF theo a. ………………………. Hết …………………………… Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh:…………….………………… Số báo danh:…….………………… ĐÁP ÁN Câu Đáp án Điểm 1 a 1 * Phương trình đã cho được viết lại:       2 1 2 4 1 3 1 (1)x x x x x       * Điều kiện: 1 0 1xx                 2 2 2 2 (1) 1 2 4 1 3 1=0 1 2 4 3 1 0 10 1 2 4 8 16 2 4 4 1 1 6 12 0 3 3 0 ( ) x x x x x x x x x x x x x xx x x xx x vn                                                Vậy phương trình có nghiệm x = -1. 0,25 0,25 0,25 0,25 b. 1          2 1 1 1 1 11 x x y y x P xy x x y x x y x                                       1 21 1 1 x x y y x y x x x y P x x y x                         1 1 1 1 x xy xy y x x P x y x x y x                        1 1 1 1 1 x y x x P xy x y x x y x                   0,25 0,25 0,25 0,25 2 a. 1    2 2 2 2 2 2 2 22 2 4 0 3 7 4 4 22 2 4 4 0 3 11 3 11 3 11 y x x y y xy x y y x xy x y x y xy x y xy x y xy                                    * Giải hệ (1): 22 0 3 11 yx x y xy        2 2 2 2 11 5 11 3 11 11 5 5 xy xy xy x x x x xy                           * Giải hệ (2): 0,5 0,25     2 22 2 2 42 2 4 0 3 11 4 2 3 4 2 11 0 1 42 2 42 1 4 5 0 5 5 14 yx xy x y xy x x x x x yx y yx x xx x x y                                                         Vậy hệ phương trình có tập nghiệm 11 11 11 11 ; , ; ,(1;2),( 5;14) 5 5 5 5 S                          0,25 b. 1 * Gọi a (mét) là chiều dài của cạnh AD. (a > 0) Xét tam giác vuông ADC, ta có:   2 2 2 2 2 2 32AC DC AD a a a     2AC a * Theo đề diện tích tam giác DAC là 22 (mét vuông) nên ta có: 2 1 . 2 2 2 4 2 2 2 AD AC a a     . * Kẻ đường cao AH trong tam giác ADC, H nằm trên DC. Ta có: 2 2 2 2 2 2 1 1 1 1 1 3 2 2 6 2 2 3 3 a AH AH AD AC a a a         *Xét tam giác vuông AHD vuông tại H, ta có 22 2 2 2 2 2 2 3 3 3 3 3 a a a DH AD AH a DH        * Vì ABCD là hình thang cân nên 3 2 2 2 3 2 333 a a a AB DC DH a        *Chu vi hình thang cân ABCD là: 2 8 4 3 12 8 3 2 2 3 4 ( ) 3 33 AB DC DA m         * Diện tích tam giác ABC là: 2 1 1 2 2 6 2 2 . . ( ) 2 2 3 3 3 S AB AH m   0,25 0,25 0,25 0,25 3 a. 1 * Khi m = 2 ta có phương trình:   2 2 3 0x x x   (1) 0,25 A B D C H *Điều kiện: 0x  2 0 0 (1) 1 2 3 0 3 (l) 2 x x x xx x                     Vậy phương trình có nghiệm x = 0; x = 1. 0,25 0,25 0,25 b. 1 * Để phương trình có hai nghiệm phân biệt khi:     2 1 4 5 0mm         2 2 6 21 0 3 12 0,m m m m R          * x 1 , x 2 là hai nghiệm của phương trình nên:         1 2 2 1 11 2 2 2 22 2 15 2 1 5 0 2 15 2 1 5 0 2 m x m x x m x m m x m x m x m x                              * Ta có: 22 12 9 20xx                    2 1 12 12 12 12 15 15 9 20 22 1 9 1 50 10 40 1 9 1 10 1 0 1 9 10 0 1 9 10 0 m x m m x m m x m x m m x m x m m x x m xx                                     *Trường hợp m = 1 ta có phương trình: 1 2 2 2 12 2 2 2 4 0 9 20 2 x x x x x             Vậy m = 1(nhận). *Trường hợp 12 9 10 0xx   ta có: 12 12 12 9 10 1 2 5 2 xx m xx m xx                 12 1 2 1 2 12 10 9 2 5 2 xx x x x x m xx                  0,25 0,25 0,25 0,25   12 12 12 2 2 2 2 2 2 2 2 2 12 12 12 10 9 2 10 9 10 9 3 10 9 10 9 2 9 18 8 0 4 5 5 3 2 2 5 2 xx xx xx x x x x x x x x m m xx xx m xx                                                                  *Khi 2 1 2 22 10 9 10 9 4 33 x x x               (không thỏa vì x 1 > x 2 ) *Khi 2 1 2 44 10 9 10 9 2 33 x x x              (thỏa) * Ta có: 12 5 4 5 16 1 2. 5 2 3 2 3 3 mm x x m m              Vậy m = 1 và 1 3 m  thỏa yêu cầu bài toán. 4 1 *Gọi số cần tìm là abc , với 1 9,0 , 9, , ,a b c a N b N c N       . *Theo giả thiết ta có: 7 a b c ab c      * Ta có phương trình: 7ab a b     78 1 7 1 11 b a b b a bb           ( Vì b = 1 không thỏa) *Ta có bảng: b – 1 -8 -4 -2 -1 1 2 4 8 b -7 -3 -1 0 2 3 5 9 a -7 9 5 3 2 c 11 8 8 11 Số cần tìm Loại Loại Loại Loại Loại 538 358 Loại Vậy số cần tìm là 538, 358. 0,25 0,25 0,25 0,25 5 a. 1 * Tính BD theo a. *Kẻ CH vuông góc AB ( H nằm trên AB). Ta có tam giác CHB là tam giác vuông cân tại H. 2BC a CH HB a AD a      *Xét tam giác vuông ADC ta có: tan 2 1 2 AD AD DCA DC a DC     . 3AB a . *Xét tam giác vuông DAB ta có: 2 2 2 2 (3 ) 10BD AD AB a a a     0,25 0,25 0,25 0,25 b 1 * Xét tam giác vuông ADC ta có: 22 5AC AD DC a   *Ta thấy: BAE BDE (góc nội tiếp cùng chắn cung EB) * Ta có . . 10 sin sin 2 5 CH BE CH BD a a BAE BDE BE a AC BD AC a        * Tam giác CBE cân tại B. Gọi K là trung điểm CE  BK vuông góc CE. * Ta có hai tam giác vuông AKB và AHC đồng dạng, nên: . 2 .3 6 55 AK AH AH AB a a a AK AB AC AC a      62 5 5 5 5 a a a CK AK AC a CE       * Câu này chúng ta còn nhiều cách giải khác bằng cách kéo dài BC hoặc DC sau đó sử dụng tam giác đồng dạng để suy ra CE. 0,25 0,25 0,25 0,25 c 1 * Gọi R là bán kính đường tròn ngoại tiếp tam giác BFM. * Xét tam giác vuông DEB ta có 22 2 2 10 . 5 10 BE a a BE BD BL BL BD a      * Ta có hai tam giác vuông DAB và FLB đồng dạng, nên: 0,25 T J M F L K I O B H C E D A 10 . 10 .2 5 33 a a BL BF BL BD a BF BA BD BA a      *Gọi J là tâm đường tròn ngoại tiếp tam giác BFM, FT là đường kính của đường tròn. * Ta thấy: BTF BMF BAE * Ta có: 2 .5 . 2 5 3 sin sin 3 a a BF CH BF AC a BTF BAE FT FT AC CH a        5 3 a R 0,25 0,25 0,25 . TÂM DẠY – HỌC THÊM ĐỀ THI THỬ TUYỂN SINH LỚP 10 PHỔ THÔNG NĂNG KHIẾU Năm học 2015 – 2016 Môn thi: TOÁN (Không chuyên) Thời gian làm bài: 120 phút, không kể thời gian phát đề Câu 1. (2 điểm). (O) tại M. Tính bán kính đường tròn ngoại tiếp tam giác BMF theo a. ………………………. Hết …………………………… Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh:…………….…………………. không giải thích gì thêm. Họ và tên thí sinh:…………….………………… Số báo danh:…….………………… ĐÁP ÁN Câu Đáp án Điểm 1 a 1 * Phương trình đã cho được viết lại:       2 1 2 4 1 3 1

Ngày đăng: 02/08/2015, 01:44

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w