Ôn thi đại học môn Toán - Chuyên đề Bất đẳng thức

7 279 0
Ôn thi đại học môn Toán - Chuyên đề Bất đẳng thức

Đang tải... (xem toàn văn)

Thông tin tài liệu

[Type text] Bộ môn Toán Khoa CNTT và Truyền Thông – ĐH Phương Đông (sưu tầm và biên soạn) ÔN THI ĐẠI HỌC MÔN TOÁN CHUYÊN ĐỀ: BẤT ĐẲNG THỨC I. Một số ghi nhớ *Định nghĩa: 0 baba . * cacbba  , * cbcaba  * dbcadcba  , * bcaccba  0, * bcaccba  0, * bdacdcba  0,0 * 00,  bdacdcba * Nnbaba nn  0 * nNnbaba nn , lẻ * mnaaa mn 1 * mnaaa mn  10 * NnRaa n  ,,0 2 , dấu = xảy ra khi a=0 * Rbaabba  ,,4)( 2 , dấu = xảy ra khi ba  (tương ứng) * Rbababa  ,,0 22 , dấu = xảy ra khi 0 ba * Raaa  ,|| , dấu = xảy ra khi 0a hoặc 0a (tương ứng) * Rbababa  ,|,||||| , dấu = xảy ra khi 0ab hoặc 0. ba (tương ứng) * Rbababa  ,||,|||||| , dấu = xảy ra khi 0ab hoặc 0. ba (tương ứng) * 1|cos|,1|sin|  xx * bababa       ,|,|||||  dấu = xảy ra khi 0,  kbka   . * bababa       ,|,|||||  dấu = xảy ra khi 0,  kbka   . * bababa       ,||,||||||  dấu = xảy ra khi 0,  kbka   . * bababa       ,||,||||||  dấu = xảy ra khi 0,  kbka   . * Bất đẳng thức Côsi Cho n số không âm n aaa , ,, 21 khi đó ta có n nn aaanaaa 2121  ; dấu "=" xảy ra khi n aaa  21 . * Bất đẳng thức Bunhiacôpxki Cho hai dãy số n aaa , ,, 21 và n bbb , ,, 21 khi đó ta có ) )( () ( 22 2 2 1 22 2 2 1 2 2211 nnnn bbbaaabababa  ; dấu "=" xảy ra khi n n b a b a b a  2 2 1 1 . Trường hợp đặc biệt: với mọi số thực x, y, z ta có *   2 22 2 2222 22 1.1.)11)((           yxyx yxyx [Type text] Bộ môn Toán Khoa CNTT và Truyền Thông – ĐH Phương Đông (sưu tầm và biên soạn) dấu "=" xảy ra khi yx  . *   2 222 2 222222 33 1.1.1.)111)((           zyxzyx zyxzyx dấu "=" xảy ra khi zyx  . II. Một số phương pháp chứng minh bất đẳng thức 1.Phương pháp sử dụng định nghĩa Để chứng minh ba  ta chứng minh 0ba . Ví dụ 1: Với mọi số thực x, y, z. Chứng minh rằng: a. zxyzxyzyx  222 b. zxyzxyzyx 222 222  c. )(23 222 zyxzyx  d. )( 444 zyxxyzzyx  Hướng dẫn giải: Ta xét hiệu a. .,,0])()()[( 2 1 )222222( 2 1 222 222222 Rzyxxzzyyx zxyzxyzyxzxyzxyzyx   Dấu “=” xảy ra khi zyx  . b.Ta xét hiệu Rzyxzyxzxyzxyzyx  ,,0)(222 2222 . Dấu “=” xảy ra khi zyx  . c.Ta xét hiệu Rzyxzyxzyxzyx  ,,)1()1()1()(23 222222 . Dấu “=” xảy ra khi 1 zyx . d.Ta xét hiệu   0])()()[( 2 1 )()()( 2 1 222222 2 1 )( 222222222222222 222444 222444444           xzzyyxxyzxzyyzx xyzzxyyzxzyx xyzzxyyzxzyxzyxxyzzyx với mọi số thực x, y, z. Dấu “=” xảy ra khi zyx  . Ví dụ 2: Với mọi số thực a, b, c, d. Chứng minh rằng: [Type text] Bộ môn Toán Khoa CNTT và Truyền Thông – ĐH Phương Đông (sưu tầm và biên soạn) )1(1 2222  dcbadcba . Hướng dẫn giải: Ta xét hiệu 0])2()2()2()2[( 4 1 )]1(444444[ 4 1 )1(1 2222 22222222   adacaba dcbadcbadcbadcba Với mọi số thực a, b, c, d. Dấu “=” xảy ra khi 1,2  dcba . 2.Phương pháp biến đổi tương đương Chứng minh bất đẳng thức cần chứng minh tương đương với một bất đẳng thức đúng. Ví dụ 3: Với mọi số thực a, b, c, d, e. Chứng minh rằng: a. baabba  1 22 b. )( 22222 edcbaedcba  c. ))(())(( 4488221010 babababa  Hướng dẫn giải: a. Bất đẳng thức cần chứng minh tương đương với bất đẳng thức 0])1()1()[( 2 1 01 22222  bababaabba . Bất đẳng thức trên luôn đúng, dấu “=” xảy ra khi 1ba . b. Bất đẳng thức cần chứng minh tương đương với bất đẳng thức 0 2222 0)( 2222 22222                              e a d a c a b a edcbaedcba Bất đẳng thức trên luôn đúng, dấu “=” xảy ra khi edcba 2222  . c. Bất đẳng thức cần chứng minh tương đương với bất đẳng thức 0)()( 0))((0)()( 00))(())(( 422422222 66222222282228 84482102104488221010    bbaababa bababaababbaba babaabbababababa Bất đẳng thức trên luôn đúng, dấu “=” xảy ra khi ba  hoặc ba  hoặc 0a hoặc 0b . Ví dụ 4: Với các số thực x, y thỏa mãn các điều kiện yxxy  ,1 . Chứng minh rằng: 22 22    yx yx . Hướng dẫn giải: Bất đẳng thức cần chứng minh tương đương với bất đẳng thức [Type text] Bộ môn Toán Khoa CNTT và Truyền Thông – ĐH Phương Đông (sưu tầm và biên soạn) 0)2( 02)2(222202)2(2222 022220 2222 022 2 222222 22 2222         yx xyyxyxyxyx yxyx yx yxyx yx yx Bất đẳng thức trên luôn đúng, dấu “=” xảy ra khi         yx xy yx 1 02 hay            2 62 2 62 y x hoặc            2 62 2 62 y x . Ví dụ 5: Với mọi số thực dương x, y, z . Chứng minh rằng: 21        xz z zy y yx x . Hướng dẫn giải: Ta có yxz z xz z zyx y zy y zyx x yx x        ;; . Cộng vế với vế của ba bất đẳng thức trên ta suy ra 1      xz z zy y yx x . Bạn đọc dễ dàng chứng minh được yxz xz xz z zyx xy zy y zyx zx yx x           ;; Cộng vế với vế của ba bất đẳng thức trên ta suy ra 2      xz z zy y yx x . 3.Phương pháp dùng bất đẳng thức Côsi Ví dụ 6: Với mọi số thực a, b, c không âm. Chứng minh rằng: abcaccbba 8))()((  . Hướng dẫn giải: Sử dụng bất đẳng thức Côsi cho từng cặp hai số không âm ta được abba 2 bccb 2 acca 2 [Type text] Bộ môn Toán Khoa CNTT và Truyền Thông – ĐH Phương Đông (sưu tầm và biên soạn) Nhân vế với vế của ba bất đẳng thức trên ta suy ra đpcm. Dấu “=” xảy ra khi a=b=c. Ví dụ 7: Giải phương trình 2 3 42 1 12 4 14 2       xxx x x x . Hướng dẫn giải: Đặt              2 0, 4 2 ab ba b a x x . Phương trình trên trở thành 2 31 11       baa b b a . Vế trái của phương trình . 2 3 3 ))(1)(1( 1 .3.))(1)(1(.3 2 1 3) 1 1 1 1 1 )](()1()1[( 2 1 3) 1 1 1 1 1 )(1( 3)1 1 ()1 1 ()1 1 ( 1 11 3 3                             baba baba baab baba baab ba baa b b a baa b b a Như vậy, vế trái  vế phải. Dấu “=” xảy ra khi 01 1          x ba b a . Vậy phương trình có nghiệm duy nhất x=0. Ví dụ 8: Với số thực dương x, y, z thỏa mãn điều kiện x+y+z=1. Tìm giá trị lớn nhất (GTLN) của biểu thức 111       z z y y x x P . Hướng dẫn giải: Ta có ) 1 1 1 1 1 1 (3 1 11 1 11 1 11                zyxz z y y x x P . Vì x+y+z=1 nên   . 4 9 )2)(2)(2( 1 .3.)2)(2)(2(.3. 4 1 ) 2 1 2 1 2 1 ).()2()2()2( 4 1 ) 111 ).(( ) 1 1 1 1 1 1 ).(( 1 1 1 1 1 1 3 3                           yxzzxyzyx yxzzxyzyx yxzzxyzyx yxzzxyzyx yxzzzxyyzyxx zyx zyx zyx zyx [Type text] Bộ môn Toán Khoa CNTT và Truyền Thông – ĐH Phương Đông (sưu tầm và biên soạn) Vì vậy, . 4 3 4 9 3 P Suy ra GTLN của P là 4 3 , đạt được khi x=y=z=1/3. Ví dụ 9: Với mọi bộ ba số a, b, c là ba cạnh của một tam giác. CMR: .3      cba c bca b acb a Hướng dẫn giải: Áp dụng bất đẳng thức Côsi, ta được 3 ))()(( .3 cbabcaacb abc cba c bca b acb a        . Ta lại có 2 2 2 ))(( a bcacba bcacba          , tương tự 2 ))(( bcbaacb  , 2 ))(( cbcaacb  . Từ đó, suy ra .))()(( abcbcacbaacb  Vì vậy, 3.3 3       abc abc cba c bca b acb a . Dấu “=” xảy ra khi a=b=c. 4.Phương pháp dùng bất đẳng thức Bunhiacôpxki Ví dụ 10: Với mọi số thực x. CMR: . 8 1 sincos 88  xx Hướng dẫn giải: Sử dụng bất đẳng thức Bunhiacôpxki cho hai bộ số )sin,(cos 44 xx và (1, 1), ta có   . 2 )sin(cos sincossincos)11)(sin(cos 244 88 2 442288 xx xxxxxx   Lại áp dụng bất đẳng thức Bunhiacôpxki cho hai bộ số )sin,(cos 22 xx và (1, 1), ta được   . 2 1 sincos1sincos)11)(sin(cos 44 2 222244  xxxxxx Vì vậy, . 8 1 sincos 88  xx Dấu “=” xảy ra khi . 24 02cossincos 22  k xxxx  Ví dụ 11: Với mọi bộ bốn số thực a, b, c, d. CMR: .)()( 222222 dcbadbca  [Type text] Bộ môn Toán Khoa CNTT và Truyền Thông – ĐH Phương Đông (sưu tầm và biên soạn) Hướng dẫn giải: Bình phương hai vế, 2222 2222222222 2)()( dcbabdac dcdcbabadbca   Sử dụng bất đẳng thức Bunhiacôpxki cho hai bộ số (a, b); (c, d) ta suy ra đpcm. Dấu “=” xảy ra khi . d b c a  Ví dụ 12: Giải hệ phương trình: . 532 532 22      yx yx Hướng dẫn giải: Sử dụng bất đẳng thức Bunhiacôpxki cho hai bộ số )3;2( yx và )3;2( ta suy ra   532)32(32)32(25 22222  yxyxyx . Hệ phương trình trên chỉ có nghiệm khi .1 3 3 2 2  yx yx 5.Phương pháp sử dụng tính đơn điệu của hàm số Ví dụ 13: Với hai số thực không âm x, y thỏa mãn điều kiện: x+y=1. Tìm GTNN và GTLN của biểu thức: 33 2yxP  . Hướng dẫn giải: Ta có y=1-x, suy ra 33 )1(2 xxP  . Xét hàm số 33 )1(2)( xxxf  trên [0, 1]. Có )22)(22(3)1(63)( 22   xxxxxf . Hàm số đồng biến trên khoảng )1,22(  và nghịch biến trên khoảng )22,0(  . .1)1(,)12(2)22(,2)0( 2  fff Vậy 2 )12(2min P tại )21,22(  yx , và 2max P tại )1,0(  yx . Ví dụ 14: Với hai số thực x, y lớn hơn e thỏa mãn x>y. CMR: y x y x  ln ln . Hướng dẫn giải: Bất đẳng thức trên tương đương với y y x x lnln  . Xét hàm số t t tf ln )(  trên khoảng ),( e . Ta có .0 ln1 )( 2 et t t tf     Vậy, )(tf là hàm số nghịch biến trên khoảng ),( e . Suy ra )()( yfxf  (đpcm). 6.Phương pháp sử dụng bất đẳng thức véc tơ . [Type text] Bộ môn Toán Khoa CNTT và Truyền Thông – ĐH Phương Đông (sưu tầm và biên soạn) ÔN THI ĐẠI HỌC MÔN TOÁN CHUYÊN ĐỀ: BẤT ĐẲNG THỨC I. Một số ghi nhớ *Định nghĩa:. a. Bất đẳng thức cần chứng minh tương đương với bất đẳng thức 0])1()1()[( 2 1 01 22222  bababaabba . Bất đẳng thức trên luôn đúng, dấu “=” xảy ra khi 1ba . b. Bất đẳng thức. rằng: 22 22    yx yx . Hướng dẫn giải: Bất đẳng thức cần chứng minh tương đương với bất đẳng thức [Type text] Bộ môn Toán Khoa CNTT và Truyền Thông – ĐH Phương Đông (sưu tầm và biên soạn)

Ngày đăng: 01/08/2015, 19:51

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan