SỞ GIÁO DỤC - ĐÀO TẠO THÁI BÌNH KỲ THI TUYỂN SINH LỚP 10 TRUNG HỌC PHỔ THÔNG Năm học 2009-2010 Môn thi: TOÁN Thời gian làm bài: 120 phút (không kể thời gian giao đề) Bài 1. (2,0 điểm) 1. Rút gọn các biểu thức sau: a) 3 13 6 2 3 4 3 3 + + + − b) x y y x x y xy x y − − + − với x > 0 ; y > 0 ; x ≠y 2. Giải phương trình: 4 x 3 x 2 + = + . Bài 2. (2,0 điểm) Cho hệ phương trình: ( ) m 1 x y 2 mx y m 1 − + = + = + (m là tham số) 1. Giải hệ phương trình khi m 2= ; 2. Chứng minh rằng với mọi giá trị của m thì hệ phương trình luôn có nghiệm duy nhất (x ;y) thoả mãn: 2 x + y ≤ 3 . Bài 3. (2,0 điểm) Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): ( ) y k 1 x 4= − + (k là tham số) và parabol (P): 2 y x= . 1. Khi k 2= − , hãy tìm toạ độ giao điểm của đường thẳng (d) và parabol (P); 2. Chứng minh rằng với bất kỳ giá trị nào của k thì đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt; 3. Gọi y 1 ; y 2 là tung độ các giao điểm của đường thẳng (d) và parabol (P). Tìm k sao cho: 1 2 1 2 y y y y+ = . Bài 4. (3,5 điểm) Cho hình vuông ABCD, điểm M thuộc cạnh BC (M khác B, C). Qua B kẻ đường thẳng vuông góc với DM, đường thẳng này cắt các đường thẳng DM và DC theo thứ tự tại H và K. 1. Chứng minh: Các tứ giác ABHD, BHCD nội tiếp đường tròn; 2. Tính · CHK ; 3. Chứng minh KH.KB = KC.KD; 4. Đường thẳng AM cắt đường thẳng DC tại N. Chứng minh 2 2 2 1 1 1 AD AM AN = + . Bài 5. (0,5 điểm) Giải phương trình: 1 1 1 1 3 x 2x 3 4x 3 5x 6 + = + ÷ − − − . . DỤC - ĐÀO TẠO THÁI BÌNH KỲ THI TUYỂN SINH LỚP 10 TRUNG HỌC PHỔ THÔNG Năm học 2009-2 010 Môn thi: TOÁN Thời gian làm bài: 120 phút (không kể thời gian giao đề) Bài 1. (2,0 điểm) 1. Rút gọn các