: (1). (C) M(C(C)M d: x + 3y +1 = 0. . . (1u a) . b) (0,5 . (0,5X 1,2,3,4,5,6X OxyzA(-1;4;6)B(-2;3;6). (S)OxAB(S) Oz. S.ABCABCaSAB SS.ABC SBAC. Oxy chABCDF( ADEK EAB KDCKD = 3KCCABCD . 10 a,b,c SỞ GD&ĐT HÀ NỘI THI TRƯỜNG THPT ĐA PHÚC : Nội dung Điểm Câu I Cho hàm số 32 1 3 y x x 2,0đ Ý a Khảo sát sự biến thiên và vẽ đồ thị hàm số 1,0đ 1.Tập xác định : D = . 2.Sự biến thiên : 2 '2y x x ; 0 '0 2 x y x 3 11 lim lim [x ( - )] = + 3 xx y x 3 11 lim lim [x ( - )] = - 3 xx y x 0,25đ Bảng biến thiên 0 2 0 0 0 4 3 Hàm số đồng biến trên các khoảng và Hàm số nghịch biến trên . Hàm số có cực đại tại 0x và y CĐ = y(0)=0. Hàm số có cực tiểu tại 2x và y CT = y(2)= 4 3 0,25đ 0,25đ 3.Đồ thị Giao Ox: (0;0), (3;0) Giao Oy: (0;0) ' 0 1yx Đồ thị hàm số nhận I 2 (1; ) 3 làm điểm uốn và là tâm đối xứng f(x)=(1/3)x^3- x^2 -8 -6 -4 -2 2 4 6 8 -5 5 x y 0,25đ Ý b d có hệ số góc 1 3 k . Gọi 0 x là hoành độ điểm M Ycbt 0 1 '( ).( ) 1 3 yx 0 '( ) 3yx 2 00 2 3 0xx 0 0 1 3 x x 4 ( 1; ) 3 (3;0) M M 0,25đ 0,25đ 0,25đ 0,25đ Câu 2 (1đ) +) Hàm số liên tục trên 1 [ ;2] 2 +) 2 2 2 '( ) ( 1) xx fx x ; +) 1 0 [ ;2] 2 '( ) 0 1 2 [ ;2] 2 x fx x +) 17 () 26 f ; 7 (2) 3 f +) 1 [ ;2] 2 7 min ( ) 6 x fx ; 1 [ ;2] 2 7 max ( ) 3 x fx 0,25đ 0,25đ 0,25đ 0,25đ Câu 3 (1đ) a) ĐK: 1 3 3 x Với điều kiện trên bpt 22 (3 1) [2(3-x)] log log x 3 1 2(3 )xx 1x KL: Kết hợp điều kiện, phương trình có nghiệm 1x 0,25đ 0,25đ Pt 2cos ( 3sinx-cos 1) 0xx cos 0 1 cos( ) 32 x x 2 2 ( ) 2 2 3 xk x k k xk Z 0,25đ 0,25đ Câu 4 (0,5đ) 22 00 1 1 1 () ( 1)( 2) 1 2 I dx dx x x x x 22 ln 1 ln 2 00 xx 3 ln 2 0,25đ 0,25đ Câu 5 (0,5đ) +) Số cần tìm có dạng abc +) 3 6 ()n S A +) B: “Số được chọn có tổng các chữ số bằng 8’’ ( ) 12nB 12 ( ) 0,1 120 PB 0,25đ 0,25đ Câu 6 (1,0đ) +) I(a;0;0) thuộc trục Ox là tâm mặt cầu 22 IA IB IA IB 2 (2;0;0)aI 2 61R Phương trình mặt cầu: 2 2 2 ( 2) 61x y z +) Tọa độ giao điểm của (S) và Oz thỏa mãn: 2 2 2 ( 2) 61 0 x y z xy 57z (0;0; 57) (0;0; 57) M M 0,25đ 0,25đ 0,25đ 0,25đ Câu 7 (1đ) +) GT () 2 SH ABC a SH +) 2 3 4 ABC a S 3 . 3 24 S ABC a V +) d qua B và d // AC ( , ) ( ;( , )) 2 ( ;( ; ))d AC SB d A SB d d H SB d +) ( ;( , ))d H SB d HK 2 2 2 2 1 1 1 28 3 3 27 a HK HK HJ SH a 3 ( , ) 2 7 d AC SB HK a 0,25đ 0,25đ 0,25đ 0,25đ Câu 8 (1đ) +) gt Cạnh hình vuông bằng 5 52 EF 2 +) Tọa độ E là nghiệm: 22 11 25 ( ) ( 3) 22 19 8 18 0 xy xy 2 58 17 x x 5 (2; ) 2 E +) AC qua trung điểm I của EF và AC EF AC: 7 29 0xy 10 7 29 0 3 : 19 8 18 0 17 3 x xy P AC EK y y 10 17 ( ; ) 33 P 9 (3;8) 5 IC IP C 0,25đ 0,25đ 0,25đ 0,25đ Câu 9 (1đ) +) ĐK : 2 5 3 0xy x +) Từ pt (1) 22 x y x y VT x y x y VP Nên (1) 0xy Thay vào (2) được : 2 2 2 6 2 5 3 (2 5 3) 0x x x x x x 2 2 3 1 2 5 3 1 2 2 1 2 5 3 3 x x x x x x x x 33xy Hệ có một nghiệm (3 ;3). 0,5đ 0,25đ 0,25đ (loại) (loại) Vô nghiệm Câu 10 (1đ) +) BĐT: 2 22 , 22 x y x y xy 22 1 1 4 2 2 ( , 0)xy x y x y xy Dấu “=” xảy ra xy +) 2 2 2 5 P a b b c c a ab bc ca Giả sử abc : 10 10 20 2 2 (1 )(1 3 ) P ac ab ac bc b b Ta có: 14 (1 )(1 3 ) (3 3 )(1 3 ) 10 6 33 b b b b P Min P 1 2 26 10 6 6 26 6 b a c và các hoán vị của nó 0,25đ 0,25đ 0,25đ 0,25đ . Ý a Khảo sát sự biến thi n và vẽ đồ thị hàm số 1,0đ 1.Tập xác định : D = . 2.Sự biến thi n : 2 '2y x. - 3 xx y x 0,25đ Bảng biến thi n 0 2 0 0 0 4 3 Hàm số đồng biến trên các khoảng và Hàm số nghịch biến trên . Hàm số có cực đại tại 0x và y CĐ = y(0)=0. Hàm. SỞ GD&ĐT HÀ NỘI THI TRƯỜNG THPT ĐA PHÚC :