1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề bài và lời giải kì thi HSG quốc tế IPhO 2011 - Thái Lan môn vật lý (3)

9 366 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 275,97 KB

Nội dung

MODIFIED Q2_EXPERIMENT_SOLUTION_14JULY.DOCX Experimental Competition: 14 July 2011 Question 2 Page 1 of 9 1 Solution: 2 . Mechanical Blackbox: a cylinder with a ball inside In order to be able to calculate the required values in i, ii, iii, we need to know: a. the position of the centre of mass of the tubing plus particle (object) which depends on ,,z m M b. the moment of inertia of the above. The position of the CM may be found by balancing. The CM I can be calculated from the period of oscillation of the tubing plus object. Analytical steps to select parameters for plotting I. 2 CM L mz M x mM    …………………… (1) L is readily obtainable with a ruler. CM x is determined by balancing the tubing and object. pivot m M O CM CM x L R z Download thêm tài liệu tại: http://thuvienvatly.com/download/ MODIFIED Q2_EXPERIMENT_SOLUTION_14JULY.DOCX Experimental Competition: 14 July 2011 Question 2 Page 2 of 9 2 II. For small-amplitude oscillation about any point O the period T is given by considering the equation:         2 sin CM M m R I g M m R g M m R            ……………. (2)     2 2 CM I M m R T g M m R     ……………………. (3) where   22 2 1 3 2 2 CM CM CM LL I M M x m z x                    2 22 1 3 CM CM CM ML Mx MLx m z x     ……………………. (4) Note that     2 2 4 CM g M m I T M m R R      ……………………. (5) Method (a): (linear graph method) The equation (5) may be put in the form:   2 2 22 4 4 CM I T R R g M m g        ……………………. (6) Hence the plot of 2 TR v.s. 2 R will yield the straight line whose Slope 2 4 g    ……………………. (7) and y-intercept   2 4 CM I M m g     ……………………. (8) Hence,   CM I M m    ……………………. (9) The value of g is from equation (7): 2 4 g    ……………………. (10) MODIFIED Q2_EXPERIMENT_SOLUTION_14JULY.DOCX Experimental Competition: 14 July 2011 Question 2 Page 3 of 9 3 Method (b): minimum point curve method The equation (5) implies that T has a minimum value at min CM I RR Mm   ……………………. (11) Hence min R can be obtained from the graph v.s.TR . And therefore   2 minCM I M m R ……………………. (12) This equation (12) together with equation (1) will allow us to calculate the required values z and M m . At the value min RR equation (5) becomes       2 min min min 2 4 g M m T M m R M m R       2 2 min min 22 min min 28 4 RR g TT      ……………………. (13) from which g can be calculated. MODIFIED Q2_EXPERIMENT_SOLUTION_14JULY.DOCX Experimental Competition: 14 July 2011 Question 2 Page 4 of 9 4 Results 30.0 cm 0.1 cmL  17.8 cm 0.1 cm CM x  (from top) CM xR (cm) time (s) for 20 cycles T (s) R (cm) 2 R (cm 2 ) 2 TR (s 2 cm) 1.1 18.59 18.78 18.59 0.933 16.7 278.9 14.53 2.1 18.44 18.25 18.53 0.920 15.7 246.5 13.29 3.1 18.10 18.09 18.15 0.906 14.7 216.1 12.06 4.1 17.88 17.78 17.81 0.891 13.7 187.7 10.88 5.1 17.69 17.50 17.65 0.881 12.7 161.3 9.85 6.1 17.47 17.38 17.28 0.869 11.7 136.9 8.83 7.1 17.06 17.06 17.22 0.856 10.7 114.5 7.83 8.1 17.06 17.00 17.06 0.852 9.7 94.1 7.04 9.1 16.97 16.91 16.96 0.847 8.7 75.7 6.25 10.1 17.00 17.03 17.06 0.852 7.7 59.3 5.58 11.1 17.22 17.37 17.38 0.866 6.7 44.9 5.03 12.1 17.78 17.72 17.75 0.888 5.7 32.5 4.49 13.1 18.57 18.59 18.47 0.927 4.7 22.1 4.04 14.1 19.78 19.90 19.75 0.991 3.7 13.7 3.69 15.1 11.16 11.13 11.13 1.114 2.7 7.3 3.34 16.1 13.25 13.40 13.50 1.338 1.7 2.9 3.04 Notes: at 15.1,16.1 CM xR cm, times for 10 cycles. MODIFIED Q2_EXPERIMENT_SOLUTION_14JULY.DOCX Experimental Competition: 14 July 2011 Question 2 Page 5 of 9 5 Method (a) Calculation from straight line graph: slope 0.04108 0.0007   s 2 /cm, y-intercept 3.10 0.05   s 2 cm 2 4 g    giving (961 20)g  cm/s 2 3.10 75.46 0.04108    cm 2   2 2.5cm      75.46 CM I M m M m       From equation (4):   22 2 1 3 2 2 CM CM CM LL I M M x m z x                  0 2 4 6 8 10 12 14 16 0 50 100 150 200 250 300 22 (s cm)TR 22 (cm )R MODIFIED Q2_EXPERIMENT_SOLUTION_14JULY.DOCX Experimental Competition: 14 July 2011 Question 2 Page 6 of 9 6 Then      2 75.46 75.0 7.84 17.8M m M M m z       2 7.38 75.46 17.8 M z m     ……………………. (14) The centre of mass position gives:   17.8 15.0M m M mz   17.8 2.8 Mz m   ……………………. (15) From equations (14) and (15):     2 7.38 17.8 75.46 17.8 2.8 zz       17.8 7.47z  And 25.27 25.3 0.1 cmz    2.68 2.7 M m  Error Estimation Find error for g : From (10),   2 4 g 22 cm/s 20cm/s 3.16    gg   i) Find error for z : First, find error for 2 3.10 75.46 cm 0.04108 r      . 2 cm 5.2)(      rr     Since error from r contributes most ( 03.0~ r r while 005.0~, cm cm x x L L   ), we estimate error propagation from r only to simplify the analysis by substituting the min and max values into equation (4). Now, we use max 75.46 2.5 77.96r r r     . The corresponding quadratic equation is     2 17.8 1.743 17.8 77.96 0zz     The corresponding solution is max ( 17.8) 7.55 cmz  MODIFIED Q2_EXPERIMENT_SOLUTION_14JULY.DOCX Experimental Competition: 14 July 2011 Question 2 Page 7 of 9 7 If we use min 75.46 2.5 72.96r r r     , the corresponding quadratic equation is     2 17.8 3.529 17.8 72.96 0zz     The corresponding solution is min ( 17.8) 6.96 cmz  So 7.55 6.96 ( 17.8) 0.3 cm 2 z      Note that ( 17.8) ~ 0.04 17.8 z z   . So, we still ignore the error propagation due to , cm Lx The error z can be estimated from ( 17.8) 0.3 cmzz     ii) Find error for : m M We know that 17.8 2.8 Mz m   ( 17.8) 0.11 2.8 Mz m        MODIFIED Q2_EXPERIMENT_SOLUTION_14JULY.DOCX Experimental Competition: 14 July 2011 Question 2 Page 8 of 9 8 Method (b) Calculation from T-R plot: Using the minimum position: min TT at   2 minCM I M m R and 2 min 2 min 8 R g T   From graph: min 8.9 0.2R  cm and min 0.846 0.005T  s 982 40g   cm/s 2       2 8.9 79.21 CM I M m M m    ……………………. (16) 0.8 0.9 1 1.1 1.2 1.3 1.4 0 2 4 6 8 10 12 14 16 18 T(s) R(cm) MODIFIED Q2_EXPERIMENT_SOLUTION_14JULY.DOCX Experimental Competition: 14 July 2011 Question 2 Page 9 of 9 9 From equations (14), (15), (16):      2 79.21 75.0 7.84 17.8M m M M m z       2 3.63 79.21 17.8M m m z        2 3.63 17.8 17.8 79.21 0 2.8 xx       17.8 8.28z  And 26.08 26.1 0.7 cmz    2.95 3.0 0.3 M m    Error estimation i) Find error for g : Using the minimum position: 2 min min 2 8 T R g   , we have 2 min min min min cm/s 30342              g T T R R g ii) Find error for z : First, find error for 22 min 79.21 cmrR . 2 minmin cm 56.32  RRr This r is equivalent to r in part 1. So, one can follow the same error analysis. As a result, we have cm 1.2608.26 z 0.8 cmz i) Find error for : m M Following the same analysis as in part I, we found that 96.2 m M ; 15.0)(  m M NOTE: This minimum curve method is not as accurate as the usual straight line graph. . Q2_EXPERIMENT_SOLUTION_14JULY.DOCX Experimental Competition: 14 July 2011 Question 2 Page 2 of 9 2 II. For small-amplitude oscillation about any point O the period T is given by considering. Experimental Competition: 14 July 2011 Question 2 Page 5 of 9 5 Method (a) Calculation from straight line graph: slope 0.04108 0.0007   s 2 /cm, y-intercept 3.10 0.05   s 2 cm. Q2_EXPERIMENT_SOLUTION_14JULY.DOCX Experimental Competition: 14 July 2011 Question 2 Page 8 of 9 8 Method (b) Calculation from T-R plot: Using the minimum position: min TT at   2 minCM I

Ngày đăng: 27/07/2015, 17:17

TỪ KHÓA LIÊN QUAN

w