ĐỀ THI THỬ ĐẠI HỌC-ĐỀ SỐ 9 MÔN: TOÁN Thời gian làm bài:180 phút I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm) Câu I (2,0 điểm) Cho (C m ) : y = 3 2 1 1 3 2 3 m x x− + , với m là tham số. 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 2. 2. Gọi M là điểm thuộc (C m ) có hoành độ bằng −1. Tìm m để tiếp tuyến của (C m ) tại điểm M song song với đường thẳng : 5x – y = 0. Câu II (2,0 điểm) 1. Giải phương trình : 2 4 3 os sin os sin 3 0 4 4 2 c x x c x x π π + + − − − = ÷ ÷ (1) 2. Giải phương trình : 7 3 log log (2 ).x x= + (2) Câu III (1,0 điểm) Tính tích phân : I = 2 0 sin 2 sin 1 3cos x x dx x π + + ∫ Câu IV Cho hình nón đỉnh S, đường cao SO. A và N là hai điểm thuộc đường tròn đáy hình nón sao cho khoảng cách từ O đến AB bằng a và · SAO = 30 o , · SAB = 60 o . Tính diện tích xung quanh của hình nón. Câu V (1,0 điểm) Cho a, b, c là số đo 3 cạnh của một tam giác, p = 2 a b c+ + . Chứng minh rằng : 1 1 1 1 1 1 2 p a p b p c a b c + + ≥ + + ÷ − − − II. PHẦN RIÊNG (3,0 điểm)Thí sinh chỉ được làm một trong hai phần (phần 1 hoặc phần 2) 1. Theo chương trình Chuẩn : Câu VI.a (2,0 điểm) 1. Trong mặt phẳng Oxy cho A, B la hai điểm thuộc trục hoành có hoành độ là nghiệm của phương trình : x 2 – 2(m + 1)x + m = 0 (*) a) Viết phương trình đường tròn đường kính AB. b) Cho E(0 ; 1). Viết phương trình đường tròn ngoại tiếp tam giác AEB. 2. Trong không gian với hệ tọa độ Oxyz cho 3 điểm A(1 ; 0 ; −1), B(1 ; 2 ; 1), C(0 ; 2 ; 0). Gọi G là trọng tâm tam giác ABC. a) Viết phương trình đường thẳng OG. Viết phương trình mặt cầu (S) đi qua 4 điểm O, A, B, C. b) Viết phương trình các mp vuông góc với đường thẳng OG và tiếp xúc với mặt cầu (S). Câu VII.a (1,0 điểm)Tìm số hạng không chứa x trong khai triển nhị thức Niuton 10 3 1 x x + ÷ với x > 0 2. Theo chương trình Nâng cao : Câu VI.b 1. Cho elip 2 2 ( ): 1 25 16 x y E + = . Xác định tọa độ tiêu điểm và tính tâm sai cua (E). Viết phương trình đường thẳng đi qua M(1;1) và cắt (E) tại A, B sao cho M là trung điểm AB 2. cho tam giác ABC biết ba chân đường cao ứng với ba đỉnh A,B,C lần lượt là A’(1;1), B(-2;3), C’(2;4). Viết phương trình đường thẳng BC. Câu VIIb). Tìm tập hợp các điểm biểu diễn số phức 2z+3-I, biết rằng . ĐỀ THI THỬ ĐẠI HỌC-ĐỀ SỐ 9 MÔN: TOÁN Thời gian làm bài:180 phút I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm) Câu. điểm) Câu I (2,0 điểm) Cho (C m ) : y = 3 2 1 1 3 2 3 m x x− + , với m là tham số. 1. Khảo sát sự biến thi n và vẽ đồ thị hàm số khi m = 2. 2. Gọi M là điểm thuộc (C m ) có hoành độ bằng −1. Tìm m để