1. Trang chủ
  2. » Đề thi

đề thi thử thpt quốc gia môn toán trường THPT chuyên thăng long hà nội

9 1,5K 2

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 592,56 KB

Nội dung

>> Truy cập http://tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 1 Câu 1 (4 điểm). Cho hàm số: x2 y x1    a. Khảo sát sự biến thiên và vẽ đồ thị của hàm số b. Tìm các giá trị của m để đường thẳng d: y m 1 x   cắt đồ thị hàm số tại 2 điểm A, B sao cho độ dài đoạn thẳng AB 2 2 Câu 2 (2 điểm). Giải phương trình: sin2x 3cos2x 2cosx 3   Câu 3 (2 điểm) a. Hộp thứ nhất chứa 10 viên bi kích thước khác nhau, trong đó có 4 viên bi màu đỏ và 6 viên bi màu xanh. Hộp thứ hai chứa 12 viên bi kích thước khác nhau, trong đó có 7 viên bi màu dỏ và 5 viên bi màu xanh. Lấy ngẫu nhiên ở mỗi hộp 3 viên bi. Tính sác xuất để lấy được 6 viên bi cùng một màu. b. Tìm số hạng chứa x 6 trong khai triển nhị thức Niu - ton của 12 2 2x x2     với x0 Câu 4 (2 điểm) a. Giải phương trình:     2 33 log 5x 1 log x x 3 1     b. Giải hệ phương trình: x 1 2y x 2y 1 2 2 5       Câu 5 (4 điểm) Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật với AB = a; AD = 2a và   SA ABCD ; góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 45 0 . Gọi M là trung điểm BC và N là trung điểm của SC a. Tính thể tích khối chóp S.ABCD, tính thể tích khối tứ diện NMCD b. Tính khoảng cách giữa hai đường thẳng BD và SC. Tính cosin góc giữa hai mặt phẳng (SBC) và (SDC) Câu 6 (2,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD. Trên các cạch BC, CD và DA lần lượt lấy các điểm M, N và E sao cho 1 CM DN DE BC 3    . Gọi H là giao điểm của AN và DM, biết 9 13 H; 10 10    và E(0;2). Viết phương trình đường thẳng BH và tìm tọa độ điểm B Câu 7.(2,0 điểm). Giải bất phương trình 2 3 3x 12x 12 2x 3 3x 5 0       Câu 8 (2 điểm). Cho ba số thực dương a, b, c thỏa điều kiện: a b c 1 a b c        SỞ GD - ĐT HÀ NỘI TRƯỜNG THPT CHUYÊN THĂNG LONG ĐỀ THI THỬ THPT QUỐC GIA ĐỢT 1NĂM 2015 Môn: TOÁN Thời gian làm bài: 180 phút, không kể thời gian phát đề >> Truy cập http://tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 2 Tìm giá trị nhỏ nhất của biểu thức:     43 2 22 22 a b 7 M 1 c a ab b 8 a b a b       ĐÁP ÁN ĐỀ THI THỬ THPT QUỐC GIA LẦN THỨ 1 MÔN TOÁN - 2015 Câu 1 2,0 điểm + TXĐ:   R \ 1 0,25đ + Sự biến thiên:         / 22 x 1 x 2 1 y x 1 x 1      / y 0 x 1    hàm số đồng biến trên từng khoảng   ;1 và   1;  0,25đ x 1 x 1 lim y ;lim y        Tiệm cận đứng là: x = 1 0,25 xx lim y 1; lim y 1      Tiệm cận ngang là: y = 1 0,25 + Bảng biến thiên: x y 1  / y 1 1      + Đồ thị (Lấy đủ các điểm, vẽ tiệm cận đứng, ngang đúng, điền đủ) x 0 2 -1 3 y 2 0 3 2 1 2 Học sinh tự vẽ hình 0,5 b, 2,0 điểm +) Xét phương trình hoành độ giao điểm: x2 m 1 x x1      0,25     2 x m 1 x m 1 0 1 x1             0,25 + Đường thẳng d cắt đồ thị tại 2 điểm phân biệt A, B  phương trình (1) có 2 nghiệm phân biệt 1   2 2 0 m 2m 5 0 m 1 m 1 .1 m 1 0 10                   0,25 + Gọi     1 1 2 2 A x ;y ;B x ;y là các giao điểm  x 1 ; x 2 là các nghiệm của phương trình (1) và 1 1 2 2 y m 1 x ;y m 1 x      0,25 >> Truy cập http://tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 3 +           2 2 2 2 2 2 1 2 1 2 1 2 1 2 1 AB x x y y x x x x 2 x x           0,25       22 2 2 1 1 2 2 x x 4x x 2 m 1 4 m 1 2 m 2m 5         (do 12 12 x x m 1 x x m 2          ) 0,25 2 22 AB 2 2 2 m 2m 5 2 2 m 2m 5 4 m 2m 1 0 m 1                0,25 + KL: Vậy m = 1 thì d cắt đồ thị hàm số tại hai điểm phân biệt A, B thỏa mãn AB 2 2 Câu 2 (2,0 điểm)     2 1 2sin xcosx 3 2cos x 1 2cosx 3     0,25 2 2sinxcosx 3cos x 2cosx 0    0,25   2cosx sinx 3cosx 1 0    0,25     cosx 0 2 sin x 3cosx 1 0 3         0,25   2 x k ;k Z 2       0,25   1 3 1 3 sin x cosx sin x sin 2 2 2 3 6           0,25   x k2 x k2 36 6 kZ x k2 x k2 36 2                                  0,25              0,25 Câu 3 a) 1 điểm Số cách lấy 3 viên bi ở hộp 1 là: 3 10 C Số cách lấy 3 viên bi ở họp là 2 là: 3 12 C → Số cách lấy 6 bi mà mỗi hộp 3 viên là: 33 10 12 C .C Số cách lấy 3 viên bi màu xanh ở hộp 1 là: 3 6 C Số cách lấy 3 viên bi màu xanh ở hộp 2 là: 3 5 C → Số cách lấy 6 viên bi màu xanh mỗi hộp 3 viên là 33 65 CC Số cách lấy 3 viên bi màu đỏ ở hộp 1 là: 3 4 C Số cách lấy 3 viên bi màu đỏ ở hộp 2 là: 3 7 C 0,25 0,25 0,25 >> Truy cập http://tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 4 Suy ra: Số cách lấy 6 viên bi màu đỏ mỗi hộp 3 viên bi là: 33 47 C .C Số cách lấy được 6 viên bi cùng 1 màu đỏ: 3 3 3 3 6 5 4 7 C .C C .C Xác suất để lấy được 6 viên bi cùng màu là: 3 3 3 3 6 5 4 7 33 10 12 C .C C .C 17 C .C 1320   0,25 b) 1 điểm Ta có: 12 12 k k 12 k 12 22 k0 2 x 2 x C. x 2 x 2                         0,25   12 k k 12 2k 3k 24 12 k0 C .2 . 1 .x     0,25 Để tìm số hạng chứa x 6 ta tìm k từ phương trình: 3k 24 6 k 10    0,25 Vậy số hạng chứa x 6 trong khai triển là:   10 10 8 6 6 12 33 C .2 . 1 .x x 128   0,25 Câu 4 a. 1 điểm Điều kiện: 2 5x 1 0 1 x 5 x x 3 0               2 33 1 1 log 5x 1 log x x 3 1 2       0,25         2 3 3 3 2 2 33 2log 5x 1 log x x 3 log 9 log 5x 1 log 9 x x 3              0,25     2 22 5x 1 9 x x 3 16x 19x 26 0         0,25 x2 13 x 16        (loại) KL: Phương trình có 1 nghiệm là x = 2 b (1,0 điểm)     1 2y 1 2y x 1 2y 1 x 2 5 2          0,25 Giải (2): Đặt   2y 2 t t 0 Ta có phương trình: 2 t2 1 2t 2 5 2t 5t 2 0 1 t t 2              0,25 + Với t = 2 2y 1 2 2 y 2     ; thay vào (1) x2 0,25 + Với 2y 1 11 t 2 2 y 22        ; thay vào (1) x0 Kết luận: Hệ phương có các nghiệm là: x 2 x 0 ; 11 xy 22          0,25 >> Truy cập http://tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 5 Câu 5 a 2 điểm E C D S B P Q N 2a M A a 0 45 +   SA ABCD AB là hình chiếu của SB lên (ABCD)  góc giữa SB và (ABCD) là   0 SB;BA SBA 45 0,25 + SAB vuông cân tại A SA a 0,25 + 2 OABCD S AB.AB 2a 0,25 + 3 2 SABCD OABCD 1 1 2a V S .SA .2a .a 2 3 3    0,25 + 2 MCD 1 1 a S MC.CD a.a 2 2 2     0,25   1a d N; MCD SA 22    0,25   N. MCD MCD 1 V S .d N; MCD 3     0,25 23 1 a a a 3 2 2 12  0,25 b 2 điểm Vẽ d qua C và         d / /BD;d AB E BD/ SCE d BD;SC d B; SCE     + BE = CD = AB suy ra B là trung điểm của AE     1 d B; SCE d A; SCE 2          0,25   AH CE AK SCE AK SH       (Vì     AK SH doCE SAH d A; SCE AK AK CE           0,25 + 4a AH 5  0,25 >> Truy cập http://tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 6 + SAH vuông tại A, AK là đường cao 2 2 2 1 1 1 AK SA AH      EC AD F EF 2BD 2a 5;AF 4A AE.AF 2a.4a 4a 4a 2a AH AK d BD;SC EF 2a 5 5 21 21               0,25 Vẽ       AP SB AP SBC doCB SAB    Vẽ   AQ SD AQ SCD   0,25  Góc giữa hai mặt phẳng (SCB) và (SCD) bằng góc   AP;AQ 0,25 + a 2 2a AP ;AQ 2 5  + 2 2 2 a 2 a SP ;SQ PQ SP SQ 2SP.SQcosBSD 2 5       Mà 2 2 2 2 SB SD BD 2a 1 cosBSD 2SB.SD 2a 2.a 5 10     2 2 2 2 2a a a 2 a 1 a PQ 2 . . 4 5 2 2 5 10      0,25 +   2 2 2 AP AQ PQ cos AP;AQ cosPAQ 2AP.AQ   2 2 2 2a 4a 2a 4 10 10 454 . 5 4 5 a 2 2a 2. . 2 5     2 2 2 2a 4a 2a 4 10 10 454 . 5 4 5 a 2 2a 2. . 2 5     0,25 Câu 6 (2 điểm) AND DCM DAN CDM     mà 00 DAN DNA 90 CDM DNA 90 AN DM       0,25 Suy ra AHMB là tứ giác nội tiếp 0 AHM ABM 90 Có ABME là hình chữ nhật 0,25 >> Truy cập http://tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 7 Suy ra A, B, M, H, E cùng thuộc một đường tròn 0 EHB 90 EH BH    0,25 + 97 EH ; 10 10     làvecto pháp tuyến của BH Phương trình đường thẳng BH là : 9 9 7 13 x y 0 10 10 10 10                 0,25 9x 7y 1 0    0,25 +)   9a 1 B a;b BH 9a 7b 1 0 b 7         + 130 EH 10  + EAH EBH (tinh chất tứ giác nội tiếp) DN 1 3 130 tanEBH tanEAH BH AD 3 10       0,25 Mà 2 2 2 2 9 13 9 81 90a BH a b a 10 10 10 70                                 2 2 13000a 23400a 10530 70   Ta có phương trình : 2 2 13000a 23400a 10530 1170 70 100   0,25 2 a 3 b 4 130a 234a 468 0 78 91 ab 65 65                  Vậy B (3 ;4) hoặc 78 61 B; 65 65     Câu 7 (2điểm ) Điều kiện : 3 x 2          2 3 1 3 x 2 x 1 2x 3 x 1 3x 5 0           0,25                 3 2 2 2 3 3 x 1 3x 5 3 x 2 x 1 2x 3 0 x 1 x 1 . 3x 5 3x 5                    0,25             32 2 2 2 33 x 1 2x 3 x 3x 4 3 x 2 0 x 1 2x 3 x 1 x 1 . 3x 5 3x 5                   Do : 3 x x 1 2x 3 0 2       Và :       2 2 33 x 1 x 1 3x 5 3x 5 0       0,25 >> Truy cập http://tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 8                 22 2 2 33 x 2 x 2 x 1 1 3 x 2 0 x 1 2x 3 x 1 x 1 3x 5 3x 5                  0,25         2 2 33 1 x 1 x 2 3 0 x 1 2x 3 x 1 x 1 3x 5 3x 5                    0,25 Ta có : 1 x1 3 1 1 2 x x 1 2x 3 2 22 x 1 2x 3 2x 3 0                    0,25 1 30 x 1 2x 3       Và         2 2 3 3 x 1 3 0x 2 x 1 x 1 . 3x 5 3x 5           0,25 Suy ra bất phương trình       1 x 2 0 x 2 tmdk     Vậy tập nghiệm của bất phương trình là   S2 0,25 Câu 8 (2,0 điểm) Ta có:     4 22 a 5 3 ab 88 a b a b   và dấu “=” xảy ra khi a = b 0,25 CM :      4 2 2 4 4 2 3 3 8a 5a 3b a b a b 3a 3b 2ab 2a b 2ab          đúng 0,25 Ta có : 3 22 b 2 1 ba a ab b 3 3   và dấu "=" xayr ra khi a = b 0,25 CM :     3 2 2 3 3 2 2 3b 2b a a ab b b a a b ab        đúng a;b 0 0,25 22 5 3 2 1 7 7 7 7 M a b b a . 1 c M a b 1 c 8 8 3 3 8 24 24 8             0,25 Do a + b + c = 1 2 7 1 c a b 1 c M 1 c 83             0,25 Đặt   2 1c f c 1 c 33     với a b c 0 11 0 c do 0 c a b c 1 33                     2 / 22 1 c 3c 1 c f c 0 3 1 c 3 1 c        (Vì 1 c 3c 1 3    và 2 1 c 1 0,25 Suy ra Hàm số f(c) liên tục và nghịch biến trên 1 (0; ] 3   1 1 1 1 2 10 7 2 10 f c f 1 M . 3 3 9 9 9 3 8 9 3                   KL: GTNN của M là: 7 2 10 . 8 9 3      khi 1 c a b 3    0,25 >> Truy cập http://tuyensinh247.com/ để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 9 .       SỞ GD - ĐT HÀ NỘI TRƯỜNG THPT CHUYÊN THĂNG LONG ĐỀ THI THỬ THPT QUỐC GIA ĐỢT 1NĂM 2015 Môn: TOÁN Thời gian làm bài: 180 phút, không kể thời gian phát đề >> Truy. để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 2 Tìm giá trị nhỏ nhất của biểu thức:     43 2 22 22 a b 7 M 1 c a ab b 8 a b a b       ĐÁP ÁN ĐỀ THI THỬ THPT QUỐC GIA LẦN. QUỐC GIA LẦN THỨ 1 MÔN TOÁN - 2015 Câu 1 2,0 điểm + TXĐ:   R 1 0,25đ + Sự biến thi n:         / 22 x 1 x 2 1 y x 1 x 1      / y 0 x 1    hàm số đồng biến

Ngày đăng: 24/07/2015, 04:17

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w