ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC- ĐỀ SỐ 4 Thời gian làm bài: 180 phút I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số ( ) ( ) 3 2 1 y m 1 x mx 3m 2 x 3 = - + + - (1) 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m 2= 2. Tìm tất cả các giá trị của tham số m để hàm số (1) đồng biến trên tập xác định của nó. Câu II (2,0 điểm) 1. Giài phương trình: ( ) ( ) 2 cos x 1 sin x cos x 1- + = 2. Giải phương trình: ( ) ( ) ( ) 2 3 3 1 1 1 4 4 4 3 log x 2 3 log 4 x log x 6 2 + - = - + + Câu III (1,0 điểm) Tính tích phân: 2 2 0 cos x I dx sin x 5 s in x 6 p = - + ò Câu IV (1,0 điểm) Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều. Mặt phẳng A'BC tạo với đáy một góc 0 30 và tam giác A'BC có diện tích bằng 8. Tính thể tích khối lăng trụ. Câu V (1,0 điểm) Giả sử x, y là hai số dương thay đổi thỏa mãn điều kiện 5 x y 4 + = . Tìm giá trị nhỏ nhất của biểu thức: 4 1 S x 4y = + II. PHẦN RIÊNG (3 điểm) Thí sinh chỉ được làm một trong hai phần (phần 1 hoặc 2). 1. Theo chương trình Chuẩn: Câu VIa (2.0 điểm) 1. Trong mặt phẳng Oxy. Viết phương trình đường thẳng ( )D đi qua điểm M(3;1) và cắt trục Ox, Oy lần lượt tại B và C sao cho tam giác ABC cân tại A với A(2;-2). 2. Trong không gian (Oxyz) cho điểm A(4;0;0) và điểm ( ) 0 0 0 0 B(x ; y ; 0), x 0;y 0> > sao cho OB 8= và góc · 0 AOB 60= . Xác định tọa độ điểm C trên trục Oz để thể tích tứ diện OABC bằng 8. Câu VII.a (1,0 điểm) Từ các chữ số 0;1;2;3;4;5 có thể lập được bao nhiêu số tự nhiên mà mỗi số có 6 chữ số khác nhau và chữ số 2 đứng cạnh chữ số 3. 2. Theo chương trình Nâng cao: Câu VIb (2,0 điểm) 1. Trong mặt phẳng Oxy. Viết phương trình đường thẳng ( )D đi qua điểm M(4;1) và cắt các tia Ox, Oy lần lượt tại A và B sao cho giá trị của tồng OA OB+ nhỏ nhất. 2. Trong không gian (Oxyz) cho tứ diện ABCD có ba đỉnh A(2;1; 1), B(3;0;1), C(2; 1;3)- - , còn đỉnh D nằm trên trục Oy. Tìm tọa độ đỉnh D nếu tứ diện có thể tích V 5= Câu VII.b (1,0 điểm) Từ các số 0;1;2;3;4;5. Hỏi có thể thành lập được bao nhiêu số có 3 chữ số không chia hết cho 3 mà các chữ số trong mỗi số là khác nhau. Hết . ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC- ĐỀ SỐ 4 Thời gian làm bài: 180 phút I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số ( ) ( ) 3 2 1 y m 1 x mx. bằng 8. Câu VII.a (1,0 điểm) Từ các chữ số 0;1;2;3 ;4; 5 có thể lập được bao nhiêu số tự nhiên mà mỗi số có 6 chữ số khác nhau và chữ số 2 đứng cạnh chữ số 3. 2. Theo chương trình Nâng cao: Câu. tích V 5= Câu VII.b (1,0 điểm) Từ các số 0;1;2;3 ;4; 5. Hỏi có thể thành lập được bao nhiêu số có 3 chữ số không chia hết cho 3 mà các chữ số trong mỗi số là khác nhau. Hết