Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 12 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
12
Dung lượng
49,94 MB
Nội dung
THI THỬ TRƯỜNG CHUYÊN ðHSP HÀ NỘI 2009 - 2010 ============================================= ============================================== 1 TRƯỜNG ðHSP HÀ NỘI ðỀ THI THỬ ðẠI HỌC LẦN I NĂM 2010 TRƯỜNG THPT CHUYÊN – ðHSP Môn thi: TOÁN Thời gian làm bài: 180 phút, không kể thời gian giao ñề ========================================== Câu 1. ( 2,0 ñiểm ) Cho hàm số y = 2x 3 + 9mx 2 + 12m 2 x + 1, trong ñó m là tham số. 1. Khảo sát sự biến thiên và vẽ ñồ thị của hàm số ñã cho khi m = - 1. 2. Tìm tất cả các giá trị của m ñể hàm số có cực ñại tại x Cð , cực tiểu tại x CT thỏa mãn: x 2 Cð = x CT . Câu 2. ( 2,0 ñiểm ) 1. Giải phương trình: 1+x + 1 = 4x 2 + x3 . 2. Giải phương trình: 5cos(2x + 3 π ) = 4sin( 6 5 π - x) – 9 . Câu 3. ( 2,0 ñiểm ) 1. Tìm họ nguyên hàm của hàm số: f(x) = 1 )1ln( 2 32 + ++ x xxx . 2. Cho hình chóp S.ABCD có SA =x và tất cả các cạnh còn lại có ñộ dài bằng a. Chứng minh rằng ñường thẳng BD vuông góc với mặt phẳng (SAC). Tìm x theo a ñể thể tích của khối chóp S.ABCD bằng 6 2 3 a . Câu 4. ( 2,0 ñiểm ) 1. Giải bất phương trình: (4 x – 2.2 x – 3). log 2 x – 3 > 2 1 4 +x - 4 x . 2. Cho các số thực không âm a, b.Chứng minh rằng: ( a 2 + b + 4 3 ) ( b 2 + a + 4 3 ) ≥ ( 2a + 2 1 ) ( 2b + 2 1 ). Câu 5. ( 2,0 ñiểm ) Trong mặt phẳng với hệ tọa ñộ Oxy, cho ba ñường thẳng : d 1 : 2x + y – 3 = 0, d 2 : 3x + 4y + 5 = 0 và d 3 : 4x + 3y + 2 = 0. 1. Viết phương trình ñường tròn có tâm thuộc d 1 và tiếp xúc với d 2 và d 3 . 2. Tìm tọa ñộ ñiểm M thuộc d 1 và ñiểm N thuộc d 2 sao cho OM + 4 ON = 0 . ……………………………… Hết………………………………… THI THỬ TRƯỜNG CHUYÊN ðHSP HÀ NỘI 2009 - 2010 ============================================= ============================================== 2 THI THỬ TRƯỜNG CHUYÊN ðHSP HÀ NỘI 2009 - 2010 ============================================= ============================================== 3 THI THỬ TRƯỜNG CHUYÊN ðHSP HÀ NỘI 2009 - 2010 ============================================= ============================================== 4 THI THỬ TRƯỜNG CHUYÊN ðHSP HÀ NỘI 2009 - 2010 ============================================= ============================================== 5 TRƯỜNG ðHSP HÀ NỘI ðỀ THI THỬ ðẠI HỌC LẦN II NĂM 2010 TRƯỜNG THPT CHUYÊN – ðHSP Môn thi: TOÁN _______________ Thời gian làm bài: 180 phút, không kể thời gian phát ñề ========================================== Ngày thi: 07 – 3 – 2010 . Câu 1. ( 2,0 ñiểm). Cho hàm số y = 1 12 − − x x . 1. Khảo sát sự biến thiên và vẽ ñồ thị ( C ) của hàm số. 2. Lập phương trình tiếp tuyến của ñồ thị ( C ) mà tiếp tuyến này cắt các trục Ox , Oy lần lượt tại các ñiểm A và B thỏa mãn OA = 4OB. Câu 2. ( 2,0 ñiểm) 1. Giải phương trình: x x xx cos sin cossin − + + 2tan2x + cos2x = 0. 2. Giải hệ phương trình: =−++++ =−++++ 011)1( 030)2()1( 22 3223 yyyxyx xyyyxyyx Câu 3. ( 2,0 ñiểm) 1. Tính tích phân: I = ∫ + + 1 0 1 1 dx x x . 2. Cho lăng trụ ñứng ABC.A’B’C’ có ñáy ABC là tam giác vuông với AB = BC = a, cạnh bên A A’ = a 2 . M là ñiểm trên A A’ sao cho ' 3 1 AÂAM = . Tính thể tích của khối tứ diện MA’BC’. Câu 4. ( 2,0 ñiểm) 1. Tìm tất cả các giá trị của tham số a ñể phương trình sau có nghiệm duy nhất: log 5 (25 x – log 5 a ) = x. 2. Cho các số thực dương a, b, c thay ñổi luôn thỏa mãn a + b + c = 1. Chứng minh rằng : .2 222 ≥ + + + + + + + + b a ac a c cb c b ba Câu 5. ( 2,0 ñiểm). Trong mặt phẳng với hệ tọa ñộ Oxy, cho ñiểm E(-1;0) và ñường tròn ( C ): x 2 + y 2 – 8x – 4y – 16 = 0. 1. Viết phương trình ñường thẳng ñi qua ñiểm E cắt ( C ) theo dây cung MN có ñộ dài ngắn nhất. 2. Cho tam giác ABC cân tại A, biết phương trình ñường thẳng AB, BC lần lượt là: x + 2y – 5 = 0 và 3x – y + 7 = 0. Viết phương trình ñường thẳng AC, biết rằng AC ñi qua ñiểm F(1; - 3). Hết D kin thi th ln sau vào các ngày 27,28 tháng 3 năm 2010. THI THỬ TRƯỜNG CHUYÊN ðHSP HÀ NỘI 2009 - 2010 ============================================= ============================================== 6 THI THỬ TRƯỜNG CHUYÊN ðHSP HÀ NỘI 2009 - 2010 ============================================= ============================================== 7 THI THỬ TRƯỜNG CHUYÊN ðHSP HÀ NỘI 2009 - 2010 ============================================= ============================================== 8 THI THỬ TRƯỜNG CHUYÊN ðHSP HÀ NỘI 2009 - 2010 ============================================= ============================================== 9 TRƯỜNG ðHSP HÀ NỘI ðỀ THI THỬ ðẠI HỌC LẦN III NĂM 2010 TRƯỜNG THPT CHUYÊN – ðHSP Môn thi: TOÁN _______________ Thời gian làm bài: 180 phút, không kể thời gian phát ñề ========================================== Ngày thi: 28 – 3 – 2010 Câu 1. ( 2,0 ñiểm). Cho hàm số y = x 4 + 2m 2 x 2 + 1 (1). 1. Khảo sát sự biến thiên và vẽ ñồ thị hàm số khi m = 1. 2. Chứng minh rằng ñường thẳng y = x + 1 luôn cắt ñồ thị hàm số (1) tại hai ñiểm phân biệt với mọi giá trị của m. Câu 2. ( 2,0 ñiểm) 1. Giải phương trình: 2sin 2 (x - 4 π ) = 2sin 2 x - tanx. 2. Giải phương trình: 2 log 3 (x 2 – 4) + 3 2 3 )2(log +x - log 3 (x – 2) 2 = 4. Câu 3. ( 2,0 ñiểm) 1. Tính tích phân: I = ∫ + 3 0 2 sin3cos sin π dx xx x . 2. Trong không gian, cho tam giác vuông cân ABC có cạnh huyền AB = 2a. Trên ñường thẳng d ñi qua A và vuông góc mặt phẳng (ABC) lấy ñiểm S sao cho mp( SBC) tạo với mp(ABC) một góc bằng 60 0 . Tính diện tích mặt cầu ngoại tiếp tứ diện SABC. Câu 4. ( 2,0 ñiểm) 1. Giải hệ phương trình: +=+ +=+ )1(51 164 22 33 xy xyyx . 2. Tìm giá trị nhỏ nhất của hàm số: f(x) = 2 2 5884 2 234 + − +−+− x x xxxx Câu 5. ( 2,0 ñiểm) 1. Trong không gian với hệ tọa ñộ Oxyz, cho ñiểm A(0;1;3) và ñường thẳng d: = += −= 3 22 1 z ty tx Hãy tịm trên ñường thẳng d các ñiểm B và C sao cho tam giác ABC ñều. 2. Trong mặt phẳng Oxy cho elíp (E) có tiêu ñiểm thứ nhất là ( - 3 ; 0) và ñi qua ñiểm M ( 1; 5 334 ). Hãy xác ñịnh tọa ñộ các ñỉnh của (E). Hết D kin thi th ln sau vào các ngày 17,18 tháng 4 năm 2010. THI THỬ TRƯỜNG CHUYÊN ðHSP HÀ NỘI 2009 - 2010 ============================================= ============================================== 10 HƯỚNG DẪN GIẢI BÀI THI LẦN 3 Câu 1. 1. Tự làm. 2. Xét phương trình hoành ñộ giao ñiểm: x 4 +2m 2 x 2 +1 = x + 1 ⇔ x 4 + 2m 2 x 2 – x = 0 ⇔ x( x 3 + 2m 2 x – 1) = 0 ⇔ =−+ = (*)012 0 23 xmx x ðặt g(x) = x 3 + 2m 2 x – 1 ; Ta có: g’(x) = 3x 2 + 2m 2 ≥ 0 (với mọi x và mọi m ) ⇒ Hàm số g(x) luôn ñồng biến với mọi giá trị của m. Mặt khác g(0) = -1 ≠ 0. Do ñó phương trình (*) có nghiệm duy nhất khác 0. Vậy ñường thẳng y = x+ 1 luôn cắt ñồ thị hàm số (1) tại hai ñiểm phân biệt với mọi giá trị của m. Câu 2. 1. Giải phương trình: 2 sin 2 ( x - 4 π ) = 2sin 2 x – tanx (1) ðiều kiện: cosx ≠ 0 ⇔ x ≠ π π . 2 k+ (*). (1) ⇔ 1 – cos (2x - 2 π ) = 2sin 2 x – tan x ⇔ 1 – sin2x = tanx ( sin 2x – 1) ⇔ −= = 1tan 12sin x x ⇔ +−= += π π π π . 4 2. 2 2 lx kx ⇔ +−= += π π π π . 4 . 4 lx kx ⇔ x = 2 . 4 π π k+ . ( Thỏa mãn ñiều kiện (*) ). 2. Giải phương trình: 2log 3 (x 2 – 4) + 3 2 3 )2(log +x - log 3 ( x -2) 2 = 4 (2). ðiều kiện: ≥+ >− 0)2(log 04 2 3 2 x x ⇔ ≥+ >− 1)2( 04 2 2 x x ⇔ −≤ > 3 2 x x (**) Pt (2) ñược biến ñổi thành: log 3 (x 2 – 4) 2 – log 3 (x – 2) 2 + 3 2 3 )2(log +x - 4 = 0 ⇔ log 3 ( x + 2) 2 + 3 2 3 )2(log +x - 4 = 0 ⇔ ( 2 3 )2(log +x + 4) ( 2 3 )2(log +x - 1) = 0. ⇔ 2 3 )2(log +x = 1 ⇔ (x+2) 2 = 3 ⇔ x+ 2 = 3± ⇔ x = - 2 3± . Kiểm tra ñiều kiện (**) chỉ có x = - 2 - 3 thỏa mãn. Vậy phương trình có nghiệm duy nhất là : x = - 2 - 3 . Chú ý: 1/ Biến ñổi : 2log 3 ( x 2 – 4) = log 3 (x 2 – 4) 2 làm mở rộng tập xác ñịnh nên xuất hiện nghiệm ngoại lai x = -2 + 3 . 2/ Nếu biến ñổi: log 3 ( x – 2) 2 = 2log 3 ( x – 2) hoặc log 3 ( x+2) 2 = 2log 3 (x+2) sẽ làm thu hẹp tập xác ñịnh dẫn ñến mất nghiệm ( Lỗi phổ biến của học sinh!) Câu 3. 1. Tính tích phân: I = ∫ + 3 0 2 . sin3cos sin π dx xx x ðặt t = x 2 sin3 + = x 2 cos4 − . Ta có: cos 2 x = 4 – t 2 và dt = dx x xx 2 sin3 cossin + . ðổi cận: Với: x = 0 thì t = 3 ; x = 3 π thì t = 2 15 [...]...11 THI TH TRƯ NG CHUYÊN ðHSP HÀ N I 2009 - 2010 ============================================= π π 3 I= ∫ cos x 0 = 3 sin x 3 + sin 2 x 1 t+2 ln 4 t−2 15 2 3 = dx = ∫ cos 0 sin x cos x 2 x 3 + sin 2 x 15 2... 2 S ) 2 = ⇔ 25s2 +10s – 2 = 0 ⇔ s = 5 5 25 5 6∓ 3 8±2 3 6± 3 8∓ 2 3 V y: B ( ;3) và C( ;3 ) ( Hai c p) ; ; 5 5 5 5 2 Xác ñ nh t a ñ các ñ nh c a (E)? ============================================== 12 THI TH TRƯ NG CHUYÊN ðHSP HÀ N I 2009 - 2010 ============================================= Theo bài ra có F1 ( - 3 ; 0) và F2 ( 3 ;0) là hai tiêu ñi m c a (E) Theo ñ nh nghĩa c a (E) 4 33 2 4 33 2 ) + . THI THỬ TRƯỜNG CHUYÊN ðHSP HÀ NỘI 2009 - 2010 ============================================= ============================================== 1 TRƯỜNG ðHSP HÀ NỘI ðỀ THI THỬ ðẠI HỌC. Câu 1. ( 2,0 ñiểm ) Cho hàm số y = 2x 3 + 9mx 2 + 12m 2 x + 1, trong ñó m là tham số. 1. Khảo sát sự biến thi n và vẽ ñồ thị của hàm số ñã cho khi m = - 1. 2. Tìm tất cả các giá trị của. ============================================== 5 TRƯỜNG ðHSP HÀ NỘI ðỀ THI THỬ ðẠI HỌC LẦN II NĂM 2010 TRƯỜNG THPT CHUYÊN – ðHSP Môn thi: TOÁN _______________ Thời gian làm bài: 180 phút, không