1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi thử Đại học năm 2011 của Trần Sỹ Tùng ( Có đáp án) - Đề số 14 doc

4 153 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 196,21 KB

Nội dung

Ôn thi Đại học www.MATHVN.com Trần Sĩ Tùng Trang 14- www.MATHVN.com Đề số 14 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I. (2 điểm) Cho hàm số 2 1 1 − = + x y x (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Tìm các điểm M thuộc đồ thị (C) sao cho tổng các khoảng cách từ M đến hai tiệm cận của (C) là nhỏ nhất. Câu II. (2 điểm) 1) Tìm m để hệ phương trình có nghiệm: 1 1 3  + =   + = −   x y x x y y m . 2) Gi ả i ph ươ ng trình: cos 2 3x.cos2x – cos 2 x = 0. Câu III. (1 đ i ể m) Tính tích phân: 2 2 0 ( sin )cos π = + ∫ I x x xdx . Câu IV. (1 đ i ể m) Trên c ạ nh AD c ủ a hình vuông ABCD có độ dài là a, l ấ y đ i ể m M sao cho AM = x (0 ≤ m ≤ a). Trên n ử a đườ ng th ẳ ng Ax vuông góc v ớ i m ặ t ph ẳ ng (ABCD) t ạ i đ i ể m A, l ấ y đ i ể m S sao cho SA = y (y > 0). Tính th ể tích kh ố i chóp S.ABCM theo a, y và x. Tìm giá tr ị l ớ n nh ấ t c ủ a th ể tích kh ố i chóp S.ABCM, bi ế t r ằ ng x 2 + y 2 = a 2 . Câu V. (1 đ i ể m) Cho x, y, z là các s ố d ươ ng tho ả mãn: 1 1 1 1 x y z + + = . Ch ứ ng minh r ằ ng: 1 1 1 1 2 2 2 + + ≤ + + + + + + z y z x y z x y z . II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu VI.a. (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho điểm C(2; 0) và elip (E): 2 2 1 4 1 + = x y . Tìm toạ độ các điểm A, B thuộc (E), biết rằng hai điểm A, B đối xứng với nhau qua trục hoành và tam giác ABC là tam giác đều. 2) Trong không gian với hệ toạ độ Oxyz, cho mặt cầu (S): x 2 + y 2 + z 2 –2x + 2y + 4z – 3 = 0 và hai đường thẳng 1 2 1 1 : , : 2 1 1 1 1 1 ∆ ∆ − − = = = = − − − x y z x y z . Viết phương trình tiếp diện của mặt cầu (S), biết tiếp diện đó song song với hai đường thẳng ∆ 1 và ∆ 1 . Câu VII.a. (1 điểm) Giải hệ phương trình: 2. 5. 90 5. 2. 80  + =   − =   x x y y x x y y A C A C B. Theo chương trình nâng cao Câu VI.b. (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho parabol (P): y 2 = 8x. Giả sử đường thẳng d đi qua tiêu điểm của (P) và cắt (P) tại hai điểm phân biệt A, B có hoành độ tương ứng là x 1 , x 2 . Chứng minh: AB = x 1 + x 2 + 4. 2) Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;5;0), B(3;3;6) và đường thẳng ∆ có phương trình tham số { 1 2 ; 1 ; 2 = − + = − = x t y t z t . Một điểm M thay đổi trên đường thẳng ∆ , xác định vị trí của điểm M để chu vi tam giác MAB đạt giá trị nhỏ nhất. Câu VII.b. Tính đạo hàm f ′(x) của hàm số ( ) 3 1 ( ) ln 3 f x x = − và gi ả i b ấ t ph ươ ng trình sau: t dt f x x 2 0 6 sin 2 '( ) 2 π π > + ∫ Hướng dẫn Đề số 14 Câu I: 2) Lấy M(x 0 ; y 0 )  (C). d 1 = d(M 0 , TCĐ) = |x 0 + 1|, d 2 = d(M 0 , TCN) = |y 0 – 2|. d = d 1 + d 2 = |x 0 + 1| + |y 0 - 2| = |x 0 + 1| + 0 3 1   x 2 3   Cô si . Dấu "=" xảy ra khi 0 1 3   x Câu II: 1) Đặt , ( 0, 0)     u x v y u v . Hệ PT  3 3 1 1 1 3                u v u v uv m u v m . ĐS: 1 0 4   m . 2) Dùng công thức hạ bậc. ĐS: ( ) 2    x k k Z Câu III: 2 2 3    I Câu IV: V = 1 ( ) 6  ya a x . 2 2 3 1 ( )( ) 36    V a a x a x . V max = 3 3 8 a khi 2  a x . Câu V: Áp dụng BĐT Côsi: 1 1 1 1 4 ( )( ) 4       x y x y x y x y . Ta có: 1 1 1 1 1 1 1 1 1 2 4 16                       x y x x y x z x y x z . Tương tự cho hai số hạng còn lại. Cộng vế với vế ta được đpcm. Câu VI.a: 1) 2 4 3 2 4 3 ; , ; 7 7 7 7              A B . 2) (P): y z 3 3 2 0     hoặc (P): y z 3 3 2 0     Câu VII.a: 2 5      x y Câu VI.b: 1) Áp dụng công thức tính bán kính qua tiêu: FA = x 1 + 2, FB = x 2 + 2. AB = FA = FB = x 1 + x 2 + 4. 2) Gọi P là chu vi của tam giác MAB thì P = AB + AM + BM. Vì AB không đổi nên P nhỏ nhất khi và chỉ khi AM + BM nhỏ nhất. Điểm   M nên   1 2 ;1 ;2    M t t t . 2 2 2 2 (3 ) (2 5) (3 6) (2 5)      AM BM t t Trong mặt phẳng tọa độ Oxy, ta xét hai vectơ   3 ;2 5  r u t và   3 6;2 5    r v t . Ta có         2 2 2 2 | | 3 2 5 | | 3 6 2 5             r r u t v t  | | | |    r r AM BM u v và   6;4 5 | | 2 29      r r r r u v u v Mặt khác, ta luôn có | | | | | |    r r r r u v u v Như vậy 2 29  AM BM Đẳng thức xảy ra khi và chỉ khi , r r u v cùng hướng 3 2 5 1 3 6 2 5       t t t   1;0;2  M và   min 2 29  AM BM . Vậy khi M(1;0;2) thì minP =   2 11 29  Câu VII.b:   ( ) l 3ln 3    f x x ;     1 3 '( ) 3 3 ' 3 3 f x x x x       Ta có: t t dt dt t t 2 0 0 0 6 6 1 cos 3 3 sin ( sin ) ( sin ) (0 sin0) 3 2 2 |                         Khi đó: 2 0 6 sin 2 '( ) 2 t dt f x x         2 1 3 3 2 0 3 2 3 2 1 3 3; 2 3; 2 2 x x x x x x x x x x x                                   . Ôn thi Đại học www.MATHVN.com Trần Sĩ Tùng Trang 1 4- www.MATHVN.com Đề số 14 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 ,0 điểm) Câu I. (2 điểm) Cho hàm số 2 1 1 − = + x y x (C) 1). f ′(x) của hàm số ( ) 3 1 ( ) ln 3 f x x = − và gi ả i b ấ t ph ươ ng trình sau: t dt f x x 2 0 6 sin 2 &apos ;( ) 2 π π > + ∫ Hướng dẫn Đề số 14 Câu I: 2) Lấy M(x 0 ; y 0 )  (C) 1) Khảo sát sự biến thi n và vẽ đồ thị (C) của hàm số. 2) Tìm các điểm M thuộc đồ thị (C) sao cho tổng các khoảng cách từ M đến hai tiệm cận của (C) là nhỏ nhất. Câu II. (2 điểm) 1) Tìm m

Ngày đăng: 30/07/2014, 01:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN