1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi thử Đại học năm 2011 của Trần Sỹ Tùng ( Có đáp án) - Đề số 32 doc

6 317 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 201,69 KB

Nội dung

Ôn thi Đại học www.MATHVN.com Trần Sĩ Tùng Trang 32- www.MATHVN.com Đề số 32 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I: (2 điểm) Cho hàm số y = 2 1 1 − − x x . 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Gọi I là giao điểm của hai đường tiệm cận, A là điểm trên (C) có hoành độ là a. Tiếp tuyến tại A của (C) cắt hai đường tiệm cận tại P và Q. Chứng tỏ rằng A là trung điểm của PQ và tính diện tích tam giác IPQ. Câu II: (2điểm) 1) Giải bất phương trình: 2 2 log ( 3 1 6) 1 log (7 10 ) + + − ≥ − − x x 2) Giải phương trình: 6 6 2 2 sin cos 1 tan2 cos sin 4 + = − x x x x x Câu III: (1 điểm) Tính tích phân: I = 4 2 0 2 1 tan π −   +   +   ∫ x x e e x dx x Câu IV: (1 điểm) Cho hình lăng trụ đứng ABCD.A’B’C’D’ có đáy ABCD là một hình thoi cạnh a, góc  BAD = 60 0 . Gọi M là trung điểm AA′ và N là trung điểm của CC′. Chứng minh rằng bốn điểm B′, M, N, D đồng phẳng. Hãy tính độ dài cạnh AA′ theo a để tứ giác B′MDN là hình vuông. Câu V: (1 điểm) Cho ba số thực a, b, c lớn hơn 1 có tích abc = 8. Tìm giá trị nhỏ nhất của biểu thức: 1 1 1 1 1 1 = + + + + + P a b c II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu VI.a. (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(2; –1) và đường thẳng d có phương trình 2x – y + 3 = 0. Lập phương trình đường thẳng (∆) qua A và tạo với d một góc α có cosα 1 10 = . 2) Trong không gian với hệ tọa độ Oxyz, cho 3 điểm A(3;1;1), B(0;1;4), C(–1;–3;1). Lập phương trình của mặt cầu (S) đi qua A, B, C và có tâm nằm trên mặt phẳng (P): x + y – 2z + 4 = 0. Câu VII.a: (1 điểm) Cho tập hợp X = {0; 1; 2; 3; 4; 5; 6}. Từ các chữ số của tập X có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau và phải có mặt chữ số 1 và 2. B. Theo chương trình nâng cao Câu VI.b: ( 2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(–1;1) và B(3;3), đường thẳng (∆): 3x – 4y + 8 = 0. Lập phương trình đường tròn qua A, B và tiếp xúc với đường thẳng (∆). 2) Trong không gian với hệ tọa độ Oxyz, cho 4 điểm A(3;0;0), B(0;1;4), C(1;2;2), D(– 1;–3;1). Chứng tỏ A, B, C, D là 4 đỉnh của một tứ diện và tìm trực tâm của tam giác ABC. Câu VII.b: (1 điểm) Giải hệ phương trình: log log 2 2 3  =   + =   y x x y xy y . www.MATHVN.com Hướng dẫn Đề số 32 Câu I: 2) Giao điểm I(1; –2). 2 1 ; 1         a A a a Phương trình tiếp tuyến tại A: y = 2 1 (1 )  a (x – a) + 2 1 1   a a Giao điểm của tiệm cận đứng và tiếp tuyến tại A: 2 1; 1        a P a Giao điểm của tiệm cận ngang và tiếp tuyến tại A: Q(2a – 1; –2) Ta có: x P + x Q = 2a = 2x A . Vậy A là trung điểm của PQ Ta có IP = 2 2 2 1 1     a a a ; IQ = 2( 1)  a . S IPQ = 1 2 IP.IQ = 2 (đvdt) Câu II: 1) Điều kiện: 1 10 3    x BPT  2 2 3 1 6 log log (7 10 ) 2      x x  3 1 6 7 10 2      x x  3 1 6 2(7 10 )      x x  3 1 2 10 8     x x  49x 2 – 418x + 369 ≤ 0  1 ≤ x ≤ 369 49 (thoả) 2) Điều kiện: cos2x ≠ 0 ( ) 4 2       ¢ k x k PT 2 3 1 1 sin 2 sin 2 4 4    x x  3sin 2 2x + sin2x – 4 = 0  sin2x = 1  4     x k ( không thoả). Vậy phương trình vô nghiệm. Câu III: I = 4 4 2 0 0 2 cos       x xe dx xdx = I 1 + I 2 Tính: I 1 = 4 0 2    x xe dx Đặt 2       x u x dv e dx  I 1 = 4 2     e – 2 4 2    e I 2 = 4 0 1 cos2 2    x dx = 1 1 sin 2 4 2 2 0         x x = 1 8 4   Câu IV: Gọi P là trung điểm của DD. ABNP là hình bình hành  AP // BN APDM là hình bình hành  AP // MD  BN // MD hay B, M, N, D đồng phẳng. Tứ giác BNDM là hình bình hành. Để B’MND là hình vuông thì 2BN 2 = BD 2 . Đặt: y = AA’  2 2 2 2 2 4          y a y a  y = 2 a Câu V: Ta chứng minh: 1 1 2 1 1 1      a b ab  1 1 1 1 1 1 1 1        a b ab ab ≥ 0 2 ( ) ( 1) 0 (1 )(1 )(1 )        b a ab a b ab (đúng). Dấu "=" xảy ra  a = b. Xét 3 1 1 1 1 1 1 1 1        a b c abc 6 4 2 2 1 1     ab abc 3 4 4 412 4 4 1 1     abc a b c  P 3 3 1 1    abc . Vậy P nhỏ nhất bằng 1 khi a = b = c = 2 Câu VI.a: 1) PT đường thẳng () có dạng: a(x – 2) + b(y +1) = 0  ax + by – 2a + b = 0 Ta có: 2 2 2 1 cos 10 5( )      a b a b  7a 2 – 8ab + b 2 = 0. Chon a = 1  b = 1; b = 7.  ( 1 ): x + y – 1 = 0 và ( 2 ): x + 7y + 5 = 0 2) PT mặt cầu (S) có dạng: x 2 + y 2 + z 2 – 2ax – 2by – 2cz + d = 0 (S) qua A: 6a + 2b + 2c – d – 11 = 0 (S) qua B: 2b + 8c – d – 17 = 0 (S) qua C: 2a + 6b – 2c + d + 11 = 0 Tâm I  (P): a + b – 2c + 4 = 0 Giải ra ta được: a = 1, b = –1, c = 2, d = –3 Vậy (S): x 2 + y 2 + z 2 – 2x + 2y – 4z – 3 = 0 Câu VII.a: Có 6 tập con có 5 chữ số chứa các số 0; 1; 2 Có 4 tập con có 5 chữ số chứa 1 và 2, nhưng không chứa số 0 Vậy số có các chữ số khác nhau được lập từ các chữ số đã cho bằng: 6(P 5 – P 4 ) + 4P 5 = 1.056 (số) Câu VI.b: 1) Tâm I của đường tròn nằm trên đường trung trực d của đoạn AB d qua M(1; 2) có VTPT là (4;2)  uuur AB  d: 2x + y – 4 = 0  Tâm I(a;4 – 2a) Ta có IA = d(I,D) 2 11 8 5 5 10 10      a a a  2a 2 – 37a + 93 = 0  3 31 2       a a  Với a = 3  I(3;–2), R = 5  (C): (x – 3) 2 + (y + 2) 2 = 25  Với a = 31 2  31 ; 27 2        I , R = 65 2  (C): 2 2 31 4225 ( 27) 2 4           x y 2) Ta có 1 ( 3;1;4); ( 1;1;1) 2      uuur r uuur AB a AC PT mặt phẳng (ABC): 3x + y + 2z – 6 = 0 ( )   D ABC  đpcm Câu VII.b: Điều kiện: x > 0 và x ≠ 1 và y > 0 và y ≠ 1 Ta có 2 log log log log 2 0      y x y y xy y x x log 1 log 2         y y x x 2 1         x y x y  Với x = y  x = y = 2 log 3 1   Với x = 2 1 y ta có: 2 1 2 2 3   y y theo bất đẳng thức Cô-si suy ra PT vô nghiệm . Ôn thi Đại học www.MATHVN.com Trần Sĩ Tùng Trang 3 2- www.MATHVN.com Đề số 32 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 ,0 điểm) Câu I: (2 điểm) Cho hàm số y = 2 1 1 − − x x tập con có 5 chữ số chứa 1 và 2, nhưng không chứa số 0 Vậy số có các chữ số khác nhau được lập từ các chữ số đã cho bằng: 6(P 5 – P 4 ) + 4P 5 = 1.056 (số) Câu VI.b: 1) Tâm I của đường. 1 1 − − x x . 1) Khảo sát sự biến thi n và vẽ đồ thị (C) của hàm số. 2) Gọi I là giao điểm của hai đường tiệm cận, A là điểm trên (C) có hoành độ là a. Tiếp tuyến tại A của (C) cắt hai đường tiệm cận

Ngày đăng: 30/07/2014, 01:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN