1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Giáo trình phân tích các tổn thất của dòng khí khi chuyển động qua cánh động cơ phụ thuộc vào đặc tính hình học và chế độ dòng chảy p1 pps

5 316 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 193,08 KB

Nội dung

- 85 - CHặNG 4 CAẽC TỉN THT CUA DOèNG KHI CHUYỉN ĩNG QUA CAẽNH óứ xaùc õởnh õổồỹc caùc tọứn thỏỳt cuớa doỡng (hồi, khờ) khi chuyóứn õọỹng qua caùnh ngổồỡi ta thổồỡng duỡng phổồng phaùp thổỷc nghióỷm, thọng thổồỡng duỡng ọỳng khờ õọỹng. Nhổợng tọứn thỏỳt naỡy thổồỡng phuỷ thuọỹc vaỡo õỷc tờnh hỗnh hoỹc vaỡ chóỳ õọỹ doỡng chaớy. 4-1. ỷc tờnh kờch thổồùc hỗnh hoỹc cuớa daợy caùnh vaỡ chóỳ õọỹ doỡng chaớy Trong tỏửng tuọỳc bin gọửm coù daợy ọỳng phun (caùnh hổồùng) vaỡ daợy caùnh õọỹng. Daợy ọỳng phun laỡ tọứ hồỹp caùc caùnh quỷat bỏỳt õọỹng cuớa tỏửng tuọỳc bin õổồỹc lừp trón stato (phỏửn tốnh) cuớa tuọỳc bin. Daợy caùnh õọỹng laỡ tọứ hồỹp caùc caùnh quaỷt õọỹng cuớa tỏửng tuọỳc bin, õổồỹc lừ p lón rọto tuọỳc bin. Tỏỳt caớ caùnh quaỷt cuớa daợy ọỳng phun õóửu coù daỷng prọfin giọỳng nhau vaỡ õổồỹc bọỳ trờ caùch õóửu nhau. Tổồng tổỷ nhổ vỏỷy, caùnh õọỹng cuợng õổồỹc bọỳ trờ caùch õóửu nhau vaỡ coù cuỡng mọỹt daỷng prọfin nhổ nhau. 4.1.1 ỷc tờnh kờch thổồùc hỗnh hoỹc. ỷc tờnh hỗnh hoỹc cuớa caùc daợy caùnh cuớa tỏửng doỹc truỷc õổồỹc bióứu thở trón hỗnh 4-1: b - Cung cuớa prọfin (cung caùnh): khoaớng caùch giổợa nhổợng õióứm xa nhỏỳt cuớa prọfin. t - Bổồùc cuớa daợy caùnh - khoaớng caùch giổợa caùc prọfin kóử nhau. B - Chióửu rọỹng cuớa daợy caùnh: khoaớng caùch theo õổồỡng thúng goùc vồùi mỷt tióỳp giaùp daợy caùnh. l - Chióửu cao hay chióửu daỡi caùnh qua ỷt. d - ổồỡng kờnh trung bỗnh cuớa daợy caùnh - õổồỡng kờnh cuớa voỡng troỡn õi qua caùc õióứm chia õọi chióửu cao caùnh quaỷt. 1x 2x y b a ' a t B u z a z H ỗnh 4.1. ỷc tờnh hỗnh hoỹc cuớa caùc daợy caùnh Giỏo trỡnh phõn tớch cỏc tn tht ca dũng khớ khi chuyn ng qua cỏnh ng c ph thuc vo c tớnh hỡnh hc v ch dũng chy - 86 - - Bóử daỡy cuớa meùp ra caùnh quaỷt - õổồỡng kờnh cuớa voỡng nọỹi tióỳp giổợa caùc õổồỡng vióửn cuớa prọfin ồớ gỏửn meùp ra. a - Cọứ ( chióửu rọỹng cuớa raợnh) - kờch thổồùc beù nhỏỳt cuớa raợnh ồớ õỏửu ra khoới daợy caùnh. Noù õổồỹc õo bũng õổồỡng kờnh cuớa voỡng troỡn nọỹi tióỳp trong raợnh. e - ọỹ phun hồi - tyớ sọỳ cuớa õoaỷn cung coù ọỳng phun L trón toaỡn bọỹ chióửu daỡi cuớa voỡng troỡn theo õổồỡng kờnh trung bỗnh cuớa daợy caùnh. e = d L 1E - goùc ra hổợu hióỷu ( õọỳi vồùi ọỳng phun caùnh hổồùng ) 1E = arc sin 1 1 t a Thọng sọỳ hỗnh hoỹc naỡy thổồỡng õổồỹc duỡng õóứ xaùc õởnh hổồùng cuớa doỡng sau daợy caùnh. Thổồỡng thỗ caùc thọng sọỳ hỗnh hoỹc cuớa daợy caùnh ngổồỡi ta kyù hióỷu nhổ sau : - ọỳi vồùi daợy ọỳng phun (caùnh hổồùng ): b 1 , t 1 , B 1 , l 1 , d 1 , 1 , a 1 , 1E - ọỳi vồùi daợy caùnh õọỹng b 2 , t 2 , B 2 , l 2 , d 2 , 2 , ỏ 2 , 2E = arcsin a 2 /t 2 y , y laỡ goùc õỷt cuớa prọfin trong daợy caùnh - goùc giổợa giỏy cung b vaỡ tỏm cuớa daợy caùnh. Ngoaỡi ra caùc õỷc tờnh trón coỡn hay sổớ duỷng khaùi nióỷm vóử goùc cos (goùc hỗnh hoỹc) cuớa meùp vaỡo prọfin ( 0k , 1k ) (Hỗnh 4.2 b), nghộa laỡ goùc nũm giổợa õổồỡng tióỳp tuyóỳn vồùi õổồỡng tỏm cuớa prọfin ồớ õỏửu vaỡo daợy caùnh vaỡ phổồng cuớa tọỳc õọỹ voỡng. ổồỡng tỏm cuớa prọfin laỡ õổồỡng bao gọửm nhổợng õióứm nũm caùch õổồỡng vióửn prọfin õóửu nhau ( = - k goỹi laỡ goùc va). ọỳi vồùi ọỳng phun vaỡ caùnh õọỹng phaớn lổỷc thọng thổồỡng 0k , 1k gỏửn bũng 90 o , õọỳi vồùi caùnh xung lổỷc beù hồn 90 o rỏỳt nhióửu. Cuỡng vồùi caùc õỷc tờnh hỗnh hoỹc tuyóỷt õọỳi ngổồỡi ta coỡn duỡng caùc thọng sọỳ hỗnh hoỹc tổồng õọỳi cuớa caùc daợy caùnh: Bổồùc tổồng õọỳi t = t/b; chióửu cao tổồng õọỳi l = l/b; bóử daỡy tổồng õọỳi cuớa meùp ra = /O; õọỹ reớ quaỷt : d l == 1 Sổỷ lión hóỷ giổợa õọỹ reợ quaỷt cuớa daợy caùnh vaỡ tyớ sọỳ cuớa õổồỡng kờnh trón chióửu daỡi caùnh quaỷt ( = d/l) coù thóứ bióứu thở bũng õúng thổùc : l l + = (4-1) Dổỷa vaỡo caùc thọng sọỳ hỗnh hoỹc cho ta gheùp nhoùm caùc daợy caùnh õọửng daỷng coù kờch thổồùc hỗnh hoỹc tuyóỷt õọỳi khaùc nhau. Trong ngaỡnh chóỳ taỷo tuọỳc bin coù thóứ chia caùc daợy caùnh ra tổỡng loaỷi theo caùc dỏỳu hióỷu khaùc nhau : - 87 - 1) Daợy ọỳng phun vaỡ daợy caùnh õọỹng phaớn lổỷc ( hỗnh 4-2a) 2) Daợy caùnh õọỹng vaỡ caùnh hổồùng xung lổỷc ( hỗnh 4-2c) Trong giồùi haỷn mọựi loaỷi ( 1 vaỡ 2 ) coù thóứ chia daợy caùnh ra mọỹt sọỳ nhoùm theo sọỳ max M ồớ õỏửu vaỡo hoỷc õỏửu ra - Nhoùm A - dổồùi ỏm ( M < M * ; M 0,3 + 0,9 ) - Nhoùm - gỏửn ỏm (M * < M < 1,2) - Nhoùm B - vổồỹt ỏm (1,1 < M < 1,3) - Nhoùm P - to dỏửn ọỳng phun Lavan (M > 1,3 ữ1,5) - Nhoùm (lổng gaợy) - phaỷm vi thay õọứi tọỳc õọỹ lồùn Trong kyợ thuỏỷt ngổồỡi ta duỡng kyù hióỷu caùc daỷng caùnh nhổ sau : o y B b x Co ok 1 1k C1 a1 y t1 k r W1 y a 1 a2 am b 2k t2 x W2 2 y c) 1k 1 W1 b) a) B Hỗnh: 4.2 Prọfin caùc daợy caùnh cuớa tỏửng tuọỳc bin a) Daợy caùnh phaớn lổỷc nhoớ dỏửn b) Sồ õọử xaùc õởnh goùc ok ( 1k ) c) Prọfin caùc daợy caùnh xung lổỷc - 88 - Chỉỵ cại dáưu C - äúng phun hay l P - cạnh âäüng ; chỉỵ säú - giạ trë trung bçnh ca gọc vo (α o hay l β 1 ) ; chỉỵ säú tiãúp theo - giạ trë trung bçnh ca gọc ra hỉỵu hiãûu (α 1E hay l β 1E ); chỉỵ cại cúi cng - loải präfin Vê dủ: C - 90 - 12A nghéa l dy äúng phun dng cho täúc âäü dỉåïi ám våïi gọc ra vo α o ≈ 90 o v gọc ra hỉỵu hiãûu α 1E ≈ 12 o . Khi thiãút kãú dy cạnh hay phán têch dng håi trong âọ cáưn sỉí dủng cạc phỉång phạp tênh toạn l thuút cng nhỉ nghiãn cỉïu thỉûc nghiãûm. Ta tháúy ràòng, âàûc tênh cạc dy cạnh khäng chè phủ thüc nhiãưu vo kêch thỉåïc hçnh hc m nọ phủ thüc vo chãú âäü dng chy nỉỵa . Nhọm thäng säú chãú tảo bao gäưm α o , β 1 - gọc vo dy cạnh ca dng, C , W - täúc âäü åí âáưu vo hồûc âáưu ra khi dy äúng phun hay l dy cạnh âäüng âọ gin nåí P 1 /P o ; P 2 /P 1 säú max M a = C/a säú, Reynolds R e = Cb/ γ ; γ âäü nhåït âäüng hc, x a = u /C a ; x 1 = u/C 1 - täúc âäü vng tỉång âäúi ; u - täúc âäü vng ; C a - täúc âäü quy ỉåïc ; tỉång âỉång våïi nhiãût giạng l thuút trong táưng v .v Chụ ràòng, nhỉỵng th thût hiãûn cọ âãø gii bàòng l thuút, cạc bi toạn trãn l ráút âäư säü, täún nhiãưu cäng sỉïc v cng khäng tênh âỉåüc hãút mäüt säú úu täú khạc. Cho nãn thỉåìng ngỉåìi ta trỉûc tiãúp dỉûa vo cạc kãút qu thê nghiãûm, trong âọ cọ tênh âãún nh hỉåíng ca âäü nhåït v âäü chëu nẹn ca cháút lng. Bàòng thê nghiãûm cọ thãø xạc âënh âỉåüc cạc âàûc tênh nàng lỉåüng v khê âäüng lỉûc hc. 4.1.2 Âàûc tênh khê âäüng hc ca dy cạnh Cạc âàûc tênh khê âäüng lỉûc hc ráút cáư n cho viãûc tênh toạn nhiãût cạc táưng túc bin, m ch úu l hãû säú täøn tháút âäüng nàng, hãû säú täúc âäü, hãû säú lỉu lỉåüng v gọc ra khi dy cạnh ca dng. - Hãû säú täøn tháút âäüng nàng trong dy cạnh l t säú cạc täøn tháút nàng lỉåüng trong dng trãn nàng lỉåüng l thuút ca dng trãn dy cạnh : + Âäúi våïi dy äúng phun : 1o C C h h ∆ =ζ (4-2) + Âäúi våïi dy cạnh âäüng 2o 1 L h h ∆ =ζ (4-3) Hãû säú täøn tháút nàng lỉåüng ca dy cạnh phủ thüc vo cạc âàûc tênh hçnh hc v cạc thäng säú chãú âäü dng ( säú M, säú R e , cạc gọc ca dng v .v ) ta s nghiãn cỉïu sau : - Hãû säú täúc âäü âỉåüc xạc âënh theo cạc cäng thỉïc : t1 1 C C =ϕ ; t2 2 W W =ψ Trong âọ : C 1 , W 2 , C 1t , W 2t - täúc âäü sau dy cạnh trong quạ trçnh thỉûc l thuút. - 89 - Nãúu täøn tháút nàng lỉåüng trong dy cạnh l bàòng hiãûu ca cạc âäüng nàng åí âáưu ra khi dy cạnh trong dng chy l thuút v dng thỉûc, cn nàng lỉåüng l thuút l âäüng nàng ca dng åí âáưu ra khi cạnh trong quạ trçnh âàóng enträpi thç : 2 2 t1 2 1 2 t2 c 1 2/C 2 / C2 / C ϕ−= − =ζ (4-2,a) 2 2 t1 2 1 2 t2 L 1 2/W 2 / W 2 / W ψ−= − =ζ (4-2,b) Nhỉ váûy l khi biãút âỉåüc cạc âàûc tênh ca dy cạnh ζ C v ζ L thç cọ thãø tçm âỉåüc cạc âàûc tênh khê âäüng khạc ϕ v ψ mäüt cạch dãù dng. - Hãû säú lỉu lỉåüng ca dy cạnh l t säú ca lỉu lỉåüng thỉûc âi qua dy cạnh trãn lỉu lỉåüng trng khäúi l thuút ca mäi cháút âi qua dy cạnh áúy. µ = G / G t (4-3) Lỉu lỉåüng thỉûc ca mäi cháút khạc våïi lỉu lỉåüng l thuút l do trỉåìng täúc âäü tải tiãút diãûn ra ca dy cạnh khäng âäưng âãưu. Âọ l do cọ låïp biãn åí phêa läưi, phêa lm ca cạnh quảt v trãn bãư màût mụt ca rnh cạnh, cng nhỉ do trỉåìng ạp sút khäng âãưu tải tiãút diãûn ra ca rnh [ ạp sút åí vạch lỉng (läưi) bẹ hån ạp sút åí vạch bủng (lm)]. Khi xạc âënh lỉu lỉåüng l thuút â gi âënh ràòng, ạp sút tải tiãút diãûn ra giỉỵ khäng âäøi v bàòng ạp sút sau dy cạnh. Âäúi våïi håi áøm, lỉu lỉåüng thỉûc khạc våïi lỉu lỉåüng l thuút cng l do nh hỉåíng ca quạ trçnh quạ lảnh, do cọ git nỉåïc trong dng. Khi xạc âënh hãû säú lỉu lỉåüng ca dy cạnh cọ thãø dng l thuút låïp biãn âãø xạc âënh lỉu lỉåüng thỉûc. Nhỉng thỉåìng thç hãû säú lỉu lỉåüng âỉåüc xạc âënh bàòng thỉûc nghiãûm theo lỉu lỉåüng âo âỉåüc. Hãû säú lỉu lỉåüng ca dy äúng phun v cạnh âäüng phủ thüc vo cạc âàûc tênh hçnh hc v thäng säú chãú âäü. - Gọc ra ca dng khi cạnh âäüng ( α 1 , β 2 ) gi l giạ trë trung bçnh ca cạc gọc âënh hỉåïng ca vẹc tå täúc âäü thỉûc sau dy cạnh, Nhåì phỉång trçnh âäüng lỉåüng ta tiãún hnh láúy trung bçnh theo bỉåïc t v theo chiãưu l. Vê dủ: gọc ra khi dy äúng phun tçm âỉåüc theo cäng thỉïc : dtdl v C dtdl v C sin sin t1 2 t1 )t()1( )t( t1 2 t1 1 )1( 1 ∫∫ ∫∫ α =α (4-4) Trong thỉûc tãú gọc ra khi dy cạnh thỉåìng âỉåüc xạc âënh bàòng thỉûc nghiãûm. Nãúu khäng cọ nhỉỵng säú liãûu thê nghiãûm, âäúi våïi dy cạnh ca túc bin hiãûn âải cọ täúc âäü dỉåïi ám, gọc ra thỉûc âỉåüc cháúp nháûn bàòng giạ trë ca gọc ra hỉỵu hiãûu. + Âäúi våïi dy äúng phun : . - CHặNG 4 CAẽC TỉN THT CUA DOèNG KHI CHUYỉN ĩNG QUA CAẽNH óứ xaùc õởnh õổồỹc caùc tọứn thỏỳt cuớa doỡng (hồi, khờ) khi chuyóứn õọỹng qua caùnh ngổồỡi ta thổồỡng duỡng phổồng phaùp. Chióửu cao hay chióửu daỡi caùnh qua ỷt. d - ổồỡng kờnh trung bỗnh cuớa daợy caùnh - õổồỡng kờnh cuớa voỡng troỡn õi qua caùc õióứm chia õọi chióửu cao caùnh qua t. 1x 2x y b a ' a t B u z a z . trỡnh phõn tớch cỏc tn tht ca dũng khớ khi chuyn ng qua cỏnh ng c ph thuc vo c tớnh hỡnh hc v ch dũng chy - 86 - - Bóử daỡy cuớa meùp ra caùnh qua t - õổồỡng kờnh cuớa voỡng nọỹi tióỳp

Ngày đăng: 26/07/2014, 20:22

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN