Sở gd & đt bắc ninh Đề thi thử đại học năm 2010 TR NG THPT lơng tài 2 Môn: Toán Ngày thi: 06.4.2010 Thời gian 180 phút ( không kể giao đề ) Phần chung cho tất cả các thí sinh (7 điểm ) Câu I: (2 điểm) Cho hàm số 2 32 = x x y 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Cho M là điểm bất kì trên (C). Tiếp tuyến của (C) tại M cắt các đờng tiệm cận của (C) tại A và B. Gọi I là giao điểm của các đờng tiệm cận. Tìm toạ độ điểm M sao cho đờng tròn ngoại tiếp tam giác IAB có diện tích nhỏ nhất. Câu II (2 điểm) 1. Giải phơng trình =+ 24 cos2sin 2 cossin 2 sin1 22 x x x x x 2. Giải bất phơng trình +>+ xxxxx 2 1 log)2(22)144(log 2 1 2 2 Câu III (1 điểm) Tính tích phân + + = e dxxx xx x I 1 2 ln3 ln1 ln Câu IV (1 điểm) Cho hình chóp S.ABC có AB = AC = a. BC = 2 a . 3aSA = , ã ã 0 30= =SAB SAC . Tính thể tích khối chóp S.ABC. Câu V (1 điểm) Cho a, b, c là ba số dơng thoả mãn : a + b + c = 3 4 . Tìm giá trị nhỏ nhất của biểu thức 333 3 1 3 1 3 1 accbba P + + + + + = Phần riêng (3 điểm) Thí sinh chỉ đợc làm một trong hai phần: Phần 1 hoặc phần 2 Phần 1:(Theo chơng trình Chuẩn) Câu VIa (2 điểm) 1. Trong mặt phẳng với hệ trục toạ độ Oxy cho cho hai đờng thẳng 052: 1 =+ yxd . d 2 : 3x +6y 7 = 0. Lập phơng trình đờng thẳng đi qua điểm P( 2; -1) sao cho đờng thẳng đó cắt hai đờng thẳng d 1 và d 2 tạo ra một tam giác cân có đỉnh là giao điểm của hai đờng thẳng d 1 , d 2 . 2. Trong không gian với hệ trục toạ độ Oxyz cho 4 điểm A( 1; -1; 2), B( 1; 3; 2), C( 4; 3; 2), D( 4; -1; 2) và mặt phẳng (P) có phơng trình: 02 =++ zyx . Gọi Alà hình chiêú của A lên mặt phẳng Oxy. Gọi ( S) là mặt cầu đi qua 4 điểm A, B, C, D. Xác định toạ độ tâm và bán kính của đờng tròn (C) là giao của (P) và (S). Câu VIIa (1 điểm) Tìm số nguyên dơng n biết: 2 3 2 2 1 2 1 2 1 2 1 2 1 2 1 2 3.2.2 ( 1) ( 1)2 2 (2 1)2 40200 + + + + + + + + + = k k k n n n n n n C C k k C n n C Phần 2: (Theo chơng trình Nâng cao) Câu VIb (2 điểm) Đề chính thức 1.Trong mặt phẳng với hệ trục toạ độ Oxy cho Hypebol (H) có phơng trình: 1 916 22 = yx . Viết phơng trình chính tắc của elip (E) có tiêu điểm trùng với tiêu điểm của (H) và ngoại tiếp hình chữ nhật cơ sở của (H). 2. Trong không gian với hệ trục toạ độ Oxyz cho ( ) 052: =++ zyxP và đờng thẳng 31 2 3 :)( =+= + zy x d , điểm A( -2; 3; 4). Gọi là đờng thẳng nằm trên (P) đi qua giao điểm của ( d) và (P) đồng thời vuông góc với d. Tìm trên điểm M sao cho khoảng cách AM ngắn nhất. Câu VIIb (1 điểm): Giải hệ phơng trình +=++ =+ ++ 113 2.322 2 3213 xxyx xyyx Hết Chú ý: Thí sinh dự thi khối B và D không phải làm câu V Thí sinh không đợc sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm Họ và tên thí sinh: Số báo danh: Dáp án Câu Nội dung Điểm I. 1 Khảo sát hàm số và vẽ đồ thị hàm số 1,00 1) Hàm số có TXĐ: { } 2\R 0,25 2) Sự biến thiên của hàm số: a) Giới hạn vô cực và các đờng tiệm cận: * +== + ylim;ylim 2x2x Do đó đờng thẳng x = 2 là tiệm cận đứng của đồ thị hàm số * lim lim 2 + = = x x y y đờng thẳng y = 2 là tiệm cận ngang của đồ thị hàm số 0,25 b) Bảng biến thiên: Ta có: ( ) 2x,0 2x 1 'y 2 < = Bảng biến thiên: x - 2 + y - - y 2 - + 2 * Hàm số nghịch biến trên mỗi khoảng ( ) 2; và ( ) +;2 0,25 3) Đồ thị: + Đồ thị cắt trục tung tại 2 3 ;0 và cắt trục hoành tại điểm 0; 2 3 + Nhận xét: Đồ thị nhận giao điểm I( 2; 2) của hai tiệm cận làm tâm đối xứng. 0,25 I. 2 Tìm M để đờng tròn có diện tích nhỏ nhất 1,00 Ta có: 2x, 2x 3x2 ;xM 0 0 0 0 , ( ) 2 0 0 2x 1 )x('y = Phơng trình tiếp tuyến với ( C) tại M có dạng: ( ) 2x 3x2 )xx( 2x 1 y: 0 0 0 2 0 + = 0,25 Toạ độ giao điểm A, B của ( ) và hai tiệm cận là: ( ) 2;2x2B; 2x 2x2 ;2A 0 0 0 Ta thấy M0 0BA xx 2 2x22 2 xx == + = + , M 0 0BA y 2x 3x2 2 yy = = + suy ra M là trung điểm của AB. 0,25 Mặt khác I = (2; 2) và tam giác IAB vuông tại I nên đờng tròn ngoại tiếp tam giác IAB có diện tích S = += += 2 )2x( 1 )2x(2 2x 3x2 )2x(IM 2 0 2 0 2 0 0 2 0 2 0,25 Dấu = xảy ra khi = = = 3x 1x )2x( 1 )2x( 0 0 2 0 2 0 Do đó có hai điểm M cần tìm là M(1; 1) và M(3; 3) 0,25 II. 1 Giải phơng trình lợng giác 1 điểm )1( 24 cos2sin 2 cossin 2 sin1 22 =+ x x x x x ( ) xsin1x 2 cos1xsin 2 x cosxsin 2 x sin11 2 += +=+ 0,25 01 2 x cos 2 x sin2. 2 x cos 2 x sinxsin01xsin 2 x cos 2 x sinxsin = = 0,25 01 2 x sin2 2 x sin21 2 x sinxsin 2 = ++ 0,25 O y x 2 3/2 3/2 2 2 sin x 0 x k x k x sin 1 x k ,k x 2 x k4 k2 2 2 x x 2sin 2sin 1 2 2 = = π = π ⇔ = ⇔ ⇔ ⇔ = π ∈ π = π+ π = + π + + Z 0,25 II. 2 Gi¶i bÊt ph¬ng tr×nh 1 ®iÓm §K: ( ) * 2 1 x 2 1 x 2 1 x 0)1x2( 2 1 x 01x4x4 0x 2 1 22 <⇔ ≠ < ⇔ >− < ⇔ >+− >− 0,25 Víi ®iÒu kiÖn (*) bÊt ph¬ng tr×nh t¬ng ®¬ng víi: [ ] 1)x21(log)2x(2x2)x21(log2 22 −−++>−− [ ] 01)x21(logx 2 <+−⇔ 0,25 < > ⇔ >− < <− > ⇔ >− < <− > ⇔ >+− < <+− > ⇔ 0x 4 1 x 1)x21(2 0x 1)x21(2 0x 0)x21(2log 0x 0)x21(2log 0x 01)x21(log 0x 01)x21(log 0x 2 2 2 2 0,25 KÕt hîp víi ®iÒu kiÖn (*) ta cã: 2 1 x 4 1 << hoÆc x < 0. 0,25 III TÝnh tÝch ph©n 1 ®iÓm ∫∫ + + = e 1 2 e 1 xdxlnx3dx xln1x xln I +) TÝnh ∫ + = e dx xx x I 1 1 ln1 ln . §Æt dx x 1 tdt2;xln1txln1t 2 =+=⇒+= §æi cËn: 2tex;1t1x =⇒==⇒= 0,25 ( ) ( ) ( ) 3 222 t 3 t 2dt1t2tdt2. t 1t I 2 1 3 2 1 2 2 1 2 1 − = −=−= − = ∫∫ 0,25 +) TÝnh dxxlnxI e 1 2 2 ∫ = . §Æt = = ⇒ = = 3 x v x dx du dxxdv xlnu 32 0,25 e 3 3 3 3 3 3 e 2 e 2 1 1 1 x 1 e 1 x e e 1 2e 1 I .ln x x dx . 3 3 3 3 3 3 9 9 9 + = − = − = − + = ∫ 0,25 =+= 21 I3II 3 e2225 3 +− 0,25 IV TÝnh thÓ tÝch h×nh chãp 1 ®iÓm Theo định lí côsin ta có: ã 2 2 2 2 2 0 2 SB SA AB 2SA.AB.cosSAB 3a a 2.a 3.a.cos30 a= + = + = Suy ra aSB = . Tơng tự ta cũng có SC = a. 0,25 Gọi M là trung điểm của SA , do hai tam giác SAB và SAC là hai tam giác cân nên MB SA, MC SA. Suy ra SA (MBC). Ta có MBCMBCMBCMBC.AMBC.SABC.S S.SA 3 1 S.SA 3 1 S.MA 3 1 VVV =+=+= 0,25 Hai tam giác SAB và SAC có ba cặp cạnh tơng ứng bằng nhau nên chúng bằng nhau. Do đó MB = MC hay tam giác MBC cân tại M. Gọi N là trung điểm của BC suy ra MN BC. Tơng tự ta cũng có MN SA. 16 a3 2 3a 4 a aAMBNABAMANMN 2 2 2 2222222 = === 4 3a MN = . 0,25 Do đó 16 a 2 a . 4 3a .3a 6 1 BC.MN 2 1 .SA 3 1 V 3 ABC.S === 0,25 V Tìm giá trị nhỏ nhất của biểu thức 1 điểm áp dụng Bất đẳng thức Côsi cho ba số dơng ta có zyx 9 z 1 y 1 x 1 9 xyz 3 xyz3 z 1 y 1 x 1 )zyx( 3 3 ++ ++= ++++ (*) áp dụng (*) ta có 333333 a3cc3bb3a 9 a3c 1 c3b 1 b3a 1 P +++++ + + + + + = 0,25 áp dụng Bất đẳng thức Côsi cho ba số dơng ta có ( ) ( ) ( ) ( ) ( ) ( ) 3 3 3 a 3b 1 1 1 a 3b 1.1 a 3b 2 3 3 b 3c 1 1 1 b 3c 1. 1 b 3c 2 3 3 c 3a 1 1 1 c 3a 1.1 c 3a 2 3 3 + + + + = + + + + + + = + + + + + + = + + 0,25 Suy ra ( ) 3 3 3 1 a 3b b 3c c 3a 4 a b c 6 3 + + + + + + + + 1 3 4. 6 3 3 4 + = Do đó 3P 0,25 Dấu = xảy ra 3 a b c 1 a b c 4 4 a 3b b 3c c 3a 1 + + = = = = + = + = + = Vậy P đạt giá trị nhỏ nhất bằng 3 khi 4/1cba === 0,25 VIa.1 Lập phơng trình đờng thẳng 1 điểm S A B C M N Cách 1: d 1 có vectơ chỉ phơng )1;2(a 1 ; d 2 có vectơ chỉ phơng )6;3(a 2 Ta có: 06.13.2a.a 21 == nên 21 dd và d 1 cắt d 2 tại một điểm I khác P. Gọi d là đờng thẳng đi qua P( 2; -1) có phơng trình: 0BA2ByAx0)1y(B)2x(A:d =++=++ 0,25 d cắt d 1 , d 2 tạo ra một tam giác cân có đỉnh I khi và chỉ khi d tạo với d 1 ( hoặc d 2 ) một góc 45 0 = = == ++ A3B B3A 0B3AB8A345cos )1(2BA BA2 220 2222 0,25 * Nếu A = 3B ta có đờng thẳng 05yx3:d =+ 0,25 * Nếu B = -3A ta có đờng thẳng 05y3x:d = Vậy qua P có hai đờng thẳng thoả mãn yêu cầu bài toán. 05yx3:d =+ 05y3x:d = 0,25 Cách 2: Gọi d là đờng thẳng cần tìm, khi đó d song song với đờng phân giác ngoài của đỉnh là giao điểm của d 1 , d 2 của tam giác đã cho. Các đờng phân giác của góc tạo bởi d 1 , d 2 có phơng trình =++ =+ +=+ + + = + + )( 08y3x9 )( 022y9x3 7y6x35yx23 63 7y6x3 )1(2 5yx2 2 1 2222 0,25 +) Nếu d // 1 thì d có phơng trình 0cy9x3 =+ . Do P d nên 05y3x:d15c0c96 ===++ 0,25 +) Nếu d // 2 thì d có phơng trình 0cy3x9 =++ . Do P d nên 05yx3:d15c0c318 =+==+ 0,25 Vậy qua P có hai đờng thẳng thoả mãn yêu cầu bài toán. 05yx3:d =+ 05y3x:d = 0,25 VIa. 2 Xác định tâm và bán kính của đờng tròn 1 điểm Dễ thấy A ( 1; -1; 0) * Giả sử phơng trình mặt cầu ( S) đi qua A, B, C, D là: 0,25 ( ) 0dcba,0dcz2by2ax2zyx 222222 >++=++++++ Vì ( ) SD,C,B,'A nên ta có hệ: = = = = =++ =++++ =++++ =++ 1d 1c 1b 2 5 a 021dc4b2a8 029dc4b6a8 014dc4b6a2 02db2a2 Vậy mặt cầu ( S) có phơng trình: 01225 222 =+++ zyxzyx 0,25 (S) có tâm 1;1; 2 5 I , bán kính 2 29 R = +) Gọi H là hình chiếu của I lên (P). H là tâm của đờng tròn ( C) +) Gọi ( d) là đờng thẳng đi qua I và vuông góc với (P). (d) có vectơ chỉ phơng là: ( ) 1;1;1n Suy ra phơng trình của d: +++ += += += t1;t1;t 2 5 H t1z t1y t2/5x Do ( ) )P(dH = nên: 6 5 t 2 5 t302t1t1t 2 5 ===+++++ 6 1 ; 6 1 ; 3 5 H 0,25 6 35 36 75 IH == , (C) có bán kính 6 186 6 31 36 75 4 29 IHRr 22 ==== 0,25 VII a. Tìm số nguyên dơng n biết 1 điểm * Xét 1n21n2 1n2 kk 1n2 k22 1n2 1 1n2 0 1n2 1n2 xC xC)1( xCxCC)x1( ++ +++++ + +++= (1) * Lấy đạo hàm cả hai vế của (1) ta có: n21n2 1n2 1kk 1n2 k2 1n2 1 1n2 n2 xC)1n2( xkC)1( xC2C)x1)(1n2( + + +++ ++++=+ (2) 0,25 Lại lấy đạo hàm cả hai vế của (2) ta có: 1n21n2 1n2 2kk 1n2 k3 1n2 2 1n2 1n2 xC)1n2(n2 xC)1k(k)1( xC3C2)x1)(1n2(n2 + + +++ ++++=+ 0,25 Thay x = 2 vào đẳng thức trên ta có: 2 3 k k 2 k 2n 1 2n 1 2n 1 2n 1 2n 1 2n 1 2n(2n 1) 2C 3.2.2C ( 1) k(k 1)2 C 2n(2n 1)2 C + + + + + + = + + + + 0,25 Phơng trình đã cho 100n020100nn240200)1n2(n2 2 ==+=+ 0,25 VIb.1 Viết phơng trình chính tắc của E líp 1 điểm (H) có các tiêu điểm ( ) ( ) 0;5F;0;5F 21 . Hình chữ nhật cơ sở của (H) có một đỉnh là M( 4; 3), 0,25 Giả sử phơng trình chính tắc của (E) có dạng: 1 b y a x 2 2 2 2 =+ ( với a > b) (E) cũng có hai tiêu điểm ( ) ( ) ( ) 15ba0;5F;0;5F 222 21 = 0,25 ( ) ( ) ( ) 2bab16a9E3;4M 2222 =+ Từ (1) và (2) ta có hệ: = = =+ += 15b 40a bab16a9 b5a 2 2 2222 222 0,25 Vậy phơng trình chính tắc của (E) là: 1 15 y 40 x 22 =+ 0,25 VIb. 2 Tìm điểm M thuộc để AM ngắn nhất 1 điểm Chuyển phơng trình d về dạng tham số ta đợc: += = = 3 1 32 tz ty tx Gọi I là giao điểm của (d) và (P) ( ) 3;1;32 + tttI Do ( ) ( ) 4;0;1105)3()1(232 ==++ IttttPI 0,25 * (d) có vectơ chỉ phơng là )1;1;2(a , mp( P) có vectơ pháp tuyến là ( ) 1;2;1 n [ ] ( ) 3;3;3n,a = . Gọi u là vectơ chỉ phơng của ( ) 1;1;1u 0,25 += = = u4z uy u1x : . Vì ( ) u4;u;u1MM + , ( ) u;3u;u1AM 0,25 AM ngắn nhất AM 0u.1)3u(1)u1(10u.AMuAM =++= 3 4 u = . Vậy 3 16 ; 3 4 ; 3 7 M 0,25 VIIb Giải hệ phơng trình: 1 điểm +=++ =+ ++ )2(1xxy1x3 )1( 2.322 2 x3y2y1x3 Phơng trình (2) =+ +=++ + 0)13( 1 113 01 2 yxx x xxyx x = = =+ = xy x x yx x x 31 1 0 013 0 1 0,25 * Với x = 0 thay vào (1) 11 8 log 11 8 22.12282.322 2 2 ===+=+ y yyyyy 0,25 * Với = xy x 31 1 thay y = 1 3x vào (1) ta đợc: 2.322 1313 =+ + xx Đặt 13 2 + = x t Vì 1 x nên 4 1 t ( ) ( ) [ ] += += += = =+=+ )83(log2y 183log 3 1 x 83t iạlo83t 01t6t6 t 1 t)3( 2 2 2 0,25 Vậy hệ phơng trình đã cho có nghiệm = = 11 8 logy 0x 2 và ( ) [ ] += += )83(log2y 183log 3 1 x 2 2 0,25 . d: +++ += += += t1;t1;t 2 5 H t1z t1y t2/5x Do ( ) )P(dH = nên: 6 5 t 2 5 t302t1t1t 2 5 ===+++++ 6 1 ; 6 1 ; 3 5 H 0, 25 6 35 36 75 IH == , (C) có bán kính 6 186 6 31 36 75 4 29 IHRr 22 ==== 0, 25 VII a. Tìm. có phơng trình 0cy3x9 =++ . Do P d nên 05yx3:d15c0c318 =+==+ 0, 25 Vậy qua P có hai đờng thẳng thoả mãn yêu cầu bài toán. 05yx3:d =+ 05y3x:d = 0, 25 VIa. 2 Xác định tâm và bán kính của đờng. Nếu A = 3B ta có đờng thẳng 05yx3:d =+ 0, 25 * Nếu B = -3A ta có đờng thẳng 05y3x:d = Vậy qua P có hai đờng thẳng thoả mãn yêu cầu bài toán. 05yx3:d =+ 05y3x:d = 0, 25 Cách 2: Gọi d là đờng thẳng